

Gadolinium Radiopurity Assay Programme for Super-Kamiokande

Matthew Thiesse 27 March 2018 IOP APP/HEPP Annual Meeting

Gadolinium in Water Cherenkov Detectors

Why?

- Neutron capture cross-section on Gd: 48800 b.
- Tag neutrons from IBD by low energy $\overline{\nu}s$ (1.8 \rightarrow 100 MeV).
- Discern $v+n \rightarrow p+e^{-}$ from $\overline{v}+p \rightarrow n+e^{+}$ CCQE scattering.

Gd-doping (theoretically) allows:

- Diffuse Supernova Background (DSNB) \overline{v} discovery.
- Supernova Early Warning, Si Burning.
- Proton Decay veto.
- Moderate benefits to other ν oscillation physics.

SK-Gd Project

- $Gd_2(SO_4)_3$ soluble, noncorrosive, and does not affect water transparency.
- EGADS: R&D established feasibility of water systems, purification and Gd loading/removal.
- 0.2% loading of SK, beginning 2018.

Impact of Gd Radioactivity on Physics

- Natural earth radiological backgrounds in $Gd_2(SO_4)_3$ present throughout SK FV.
- Neutron tagging w/ Gd removes many backgrounds, but adds new irreducible sources:
- ²³⁸U spontaneous fission, mimics IBD,
- H.E. β -decays (Q_{β} > 2 MeV), mimics solar ν elastic scattering,
- (α, n) interaction + solar v candidate, mimics IBD.
- Need to reduce natural backgrounds in Gd₂(SO₄)₃,
- During processing of raw Gd ore,
- Anion exchange resin.

Radioactive chain	Part of the chain	SRN (mBq/kg)	Solar $\nu~(\rm mBq/kg)$
23811	^{238}U	< 5	-
0	^{226}Ra	SRN (mBq/kg) < 5 - - - - - - -	< 0.5
232 Th	^{228}Ra	-	< 0.05
111	^{228}Th	SRN (mBq/kg) < 5 - - - - - -	< 0.05
23517	^{235}U	-	< 3
U	$^{227}Ac \; / \; ^{227}Th$	-	< 3

Boulby Mine and Lab

- Working potash (KCl) mine on coast of N. York Moors.
- STFC Lab located 1100m underground (2805 m.w.e.).
- Low cosmic muon, radon, and natural radioactive backgrounds in the lab.
 - U, 67 ppb, Rn, <3 Bqm⁻³,
 - Th, 125 ppb, Low γ , n.
 - Exception: High ⁴⁰K from potash.
- Site of experiments:
 - DRIFT-IId,
 - ULB Ge Materials Screening,
 - Muon tomography for CCS,
 - Environmental gamma spec,
 - Astrobiology,
 - Space Exploration Tech. Dev.,
 - Life in low background radiation.

Boulby Underground Germanium Suite (BUGS)

- ISO class 1000 clean room.
- 6 HPGe detectors in operation:

Chaloner	BEGe	0.8 kg	48% rel. eff.
Lumpsey	SAGe-Well	1.5 kg	69% rel. eff.
Lunehead	p-type Coax	2.0 kg	92% rel. eff.
Roseberry	BEGe	0.9 kg	58% rel. eff.
Merrybent	p-type Coax	2.0 kg	112% rel. eff.
Belmont	p-type Coax	3.2 kg	171% rel. eff.

27 March 2018

Thiesse -- Gd Screening for SK

П

Thiesse -- Gd Screening for SK

27 March 2018

Thiesse -- Gd Screening for SK

Total Activity

- Net count rate, $N = C/\Delta t_c B/\Delta t_B$.
- Critical Limit: "Is the net count significant (i.e. N > $k_{\alpha}\sigma_{0}$)?"
- Upper Limit: "Given that this count is not statistically significant, what is the maximum statistically reasonable count?"
- Activity = Net count rate / (sample mass * live time * det. efficiency * branching ratio).
- Uncertainties \rightarrow Poisson statistics.
- Total activity in each decay chain: average all individual gamma line activities, weighted by branching ratio.

 $L_{\rm D}$ (a) (b) $k_{\alpha}\sigma_0$ (C) Not Detected Background detected MAY WILL

Glimore, Practical Gamma Ray Spectrometry, 2nd ed., 2008.

For $Gd_2(SO_4)_3$ sample on Lunehead:

- ²³⁸U: 1.79 +/- 1.71 mBq/kg, - ²³²Th: 48 +/- 17 mBq/kg, - ²³⁵U: <4 mBq/kg,

- 40K: <39 mBq/kg, - 60Co: <0.43 mBq/kg, - 176Lu: 2.5 +/- 1.8 mBq/kg.

Screening Programme Status

- Three samples measured at Boulby for SK-Gd.
- Many samples measured at Canfranc Lab in Spain.
- Repeated measurements on identical samples at both labs are consistent.
- SK-Gd radiopurity requirements for supply Gd₂(SO₄)₃ met.
- Further radiopurity monitoring of other detector components (e.g. resin, sealant, PMT glass, etc.) ongoing.
- Huge effort upcoming to screen full delivery of SK-Gd Gd₂(SO₄)₃, 100 tons of material!

		Specific activity		Specific activity		Specific activity	
		(mBq/kg) - isotope	ppb	(mBq/kg) - isotope	ppb	(mBq/kg) - isotope	ppb
Isotope	Abundance	GSF-1604-MLC-1		GSF-1604-MLC-2		GOX-1510-MLC-1	
238-U	0.993	33 ± 7	3 ± 1	< 35	< 3	1198 ± 225	97 ± 18
232-Th	1.000	118 ± 4	29 ± 1	95 ± 3	23 ± 1	254 ± 19	62 ± 5
235-U	0.007	1.0 ± 0.5	2 ± 1	5±1	8 ± 2	n/a	n/a
176-Lu	0.026	14 ± 6	286 ± 119	3 ± 2	51 ± 40	n/a	n/a
60-Co		< 0.5	trace	< 0.5	trace	n/a	n/a
40-K	0.000	< 21	< 677	< 17	< 511	<322	<10382

6 CL	Chain	Main subchain isotope	GSF- 1710- NYC- 17090 <mark>1</mark>	GSF- 1710- NYC- 17090 <mark>2</mark>	
	23811	²³⁸ U	< 9.7	< 12	
95%	0	²²⁶ Ra	< 0.19	< 0.21	
e at	000 1	²²⁸ Ra	< 0.24	< 0.26	
are	²³² 1h	²²⁸ Th	< 0.28	< 0.31	
mits	²³⁵ U	²³⁵ U	< 0.35	< 0.41	
g; lii		²²⁷ Ac/ ²²⁷ Th	< 1.7	< 1.4	
Units are mBq/Kg		⁴⁰ K	< 0.8	< 1.0	
		¹³⁸ La	< 0.09 <115 ppb La	< 0.05 <61 ppb La	
		¹⁷⁶ Lu	0.13± 0.03 2.5 ppb Lu	0.11± 0.04 2.1 ppb Lu	
		¹³⁴ Cs	< 0.08	< 0.06	
	ppb	¹³⁷ Cs	< 0.13 < 0.10		
MLC-	1				
97 ± 18 62 ± 5			Canfranc		
	n/a				
nla					

Boulby

Backup

Uranium-235

