

3D Printing Gaseous Radiation Detectors

Sam Fargher¹

Jon Burns²

Lee Thompson¹

Physics and Astronomy, The University of Sheffield
2. AWE, plc

IOP APP - HEPP 2018

Overview

1. Motivation

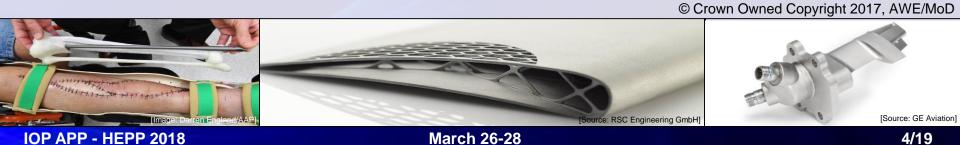
- The Technology
- The 'Grand Challenge'
- The Possibilities

1. Creation

- Quick Introduction to Rapid Prototyping
- Introduction to Fused Deposition Modelling (FDM)
- The Prototype
- The Process
- The Tracker

2. Operation

- The Setup
- Tube 1 Results
- Tube 2 Results
- 3D Tracker


3. Future Plans

Motivation

- The Technology
- The 'Grand Challenge'
- The Possibilities

The Technology

- **Rapidly growing** technology, with increases in print speed, print size and feature resolution.
- **Decreasing cost** of printers and **inexpensive** build materials, with costs likely to continue decreasing.
- Build materials are durable, strong, relatively heat, chemical and moisture resistant.
- Constantly growing market (predicted 300% growth in next decade).

The 'Grand Challenge'

	Current capability	Performance goal
Printing resolution in x-y	~ 75 µm	~ 1 µm
Layer thickness in z	$\sim 50 \ \mu m$	$\sim 1 \ \mu m$
Print speed	10 cm/s	> 100 cm/s
Materials	Either polymers or	Polymer-metal composites
	metals	
Object size	$50 \text{ cm} \times 50 \text{ cm} \times 25 \text{ cm}$	$200 \text{ cm} \times 100 \text{ cm} \times 10 \text{ cm}$

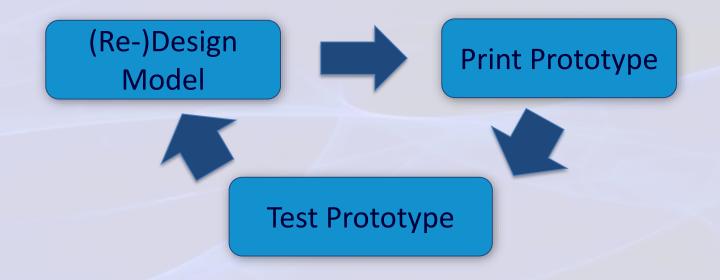

Table comparing commercial Additive Manufacturing (AM) capabilities to the performance needed to 3D print complete MPGCs, containing GEMs, for high spatial resolution detectors required in HEP experiments [Hohlmann, 2013].

Current capabilities *≠* **Performance Goals**

But we can still use it!

The Possibilities

- Produce modular detector arrays that can have broken modules easily replaced.
- Possibility of **biodegradable** materials; giving the detectors significant longevity without compromising the environment.
- Ease of design alteration allows **customizability** and **scalability**.
- Produce prototype detectors to **test electronics**.
- Print detectors in **remote locations**.
- Investigate **new geometries** of detectors.
- Easily print detectors for **Outreach**.
- Low radioactivity of build materials minimizes background.

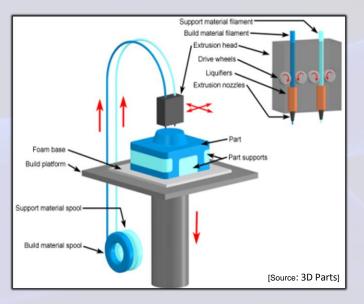


IOP APP - HEPP 2018

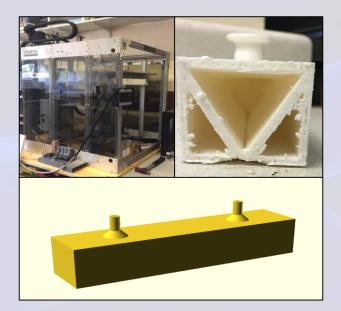
Creation

- Quick Introduction to Rapid Prototyping
- Introduction to Fused Deposition Modelling (FDM)
- The Prototype
- The Process
- The Tracker

Quick Introduction to Rapid Prototyping



Motivation 000


Introduction to Fused Deposition Modelling (FDM)

- 3D models are constructed layer by layer from CAD file.
- Each layer is created by **extruding molten thermoplastic** in the x-y plane.
- The base plate moves in the z-axis to build up layers.
- The layers are **thermally fused** on contact to create a solid structure.

The Prototype

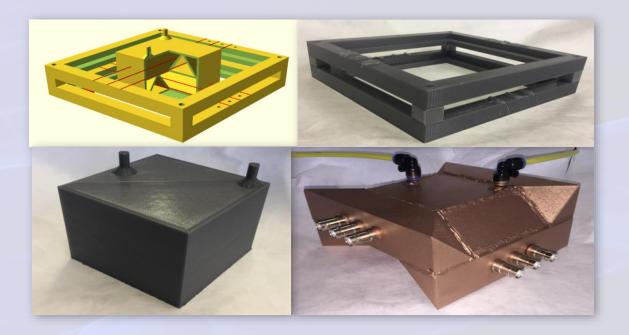
- **larocci tubes** are of the simplest in design and function:
 - Consists of a central tube, anode wire (high tension) and highly resistive cathode coating.
- **OpenSCAD** to create CAD model.
 - Triangular prism shaped volume
 - 142 mm × 24 mm × 28 mm (x × y × z)
- Gigabot to print:
 - Large scale FDM printer.
 - Build size 600 mm x 600 mm x 600 mm.
- **PLA** as print material
 - Polylactic Acid, (C₃H₄O₂)_n
 - Low warping
 - Low Outgassing (TML: 0.56%, CVCM: 0.01%, WVR: 0.03%)

© Crown Owned Copyright 2017, AWE/MoD

IOP APP - HEPP 2018

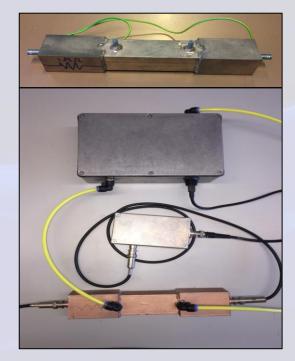

IOP APP - HEPP 2018

The Process


March 26-28

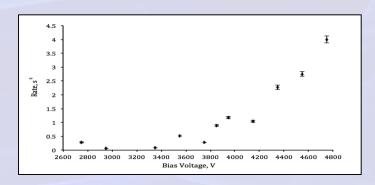
- Wire frame 3D printed to hold anode wire at high tension.
 - Percentage infill investigated to provide sufficient friction.
 - Stainless Steel Wire (r_a~50 μm)
- Hollow tube designed and the GCODE edited:
 - Pause print at midway point to allow the introduction of the anode wire.
 - Deposit more molten plastic in layers closest to wire, to ensure sufficient grip.
- Tube coated in **copper shielding** spray (to act as grounded cathode).
- End caps 3D printed to protect anode wire.

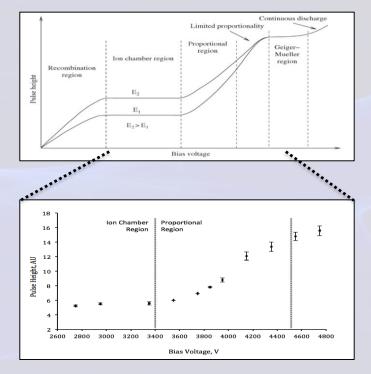
The Tracker



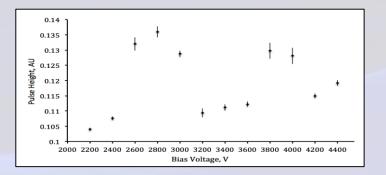
Operation

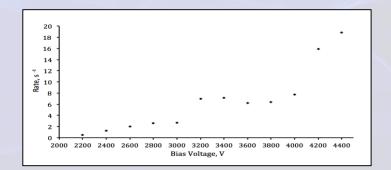
- The Setup
- Tube 1 Results
- Tube 2 Results
- 3D Tracker


The Setup


- Two tubes produced by similar methods.
- **Argon-Methane** (95:5) gas mixture flowed through tube at constant flow rate:
 - < 0.09 liters/min</p>
 - Oxygen level monitored and maintained below 250ppm.
- Temperature kept constant at 299 ± 1 K.
- Cosmic Ray Muons main source of signal.
- Pulse height and rate measured.

Tube 1 Results


- Pulse height plotted against bias voltage.
 - Graph appears to take characteristic form over range of bias voltages applied.
- Rate of pulses plotted against bias voltage.
 - Correlation between rate and bias voltage.



Tube 2 Results

- Pulse height plotted against bias voltage.
 - Not as expected.
- Rate of pulses plotted against bias voltage.
 - Some correlation between rate and bias voltage.
- Difference in operation between tubes possibly due to moisture in tube or charge buildup due to lack of cathode.
 - Check data with oxygen monitor data
 - Currently retaking data in humidity controlled environment.
 - Next stage to print tube with cathode.

© Crown Owned Copyright 2017, AWE/MoD

IOP APP - HEPP 2018

Operation 3D Tracker

0.8

0.8

0.7

0.6

0.5

0.4

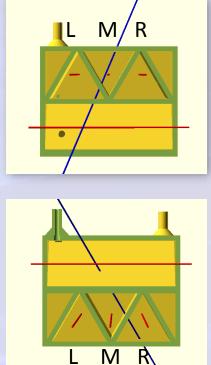
0.3

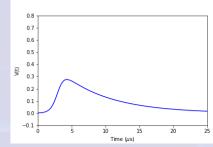
0.2

0.1

0.0

-0.1


Ó


5

10

Time (µs)

V(t)

10

Time (µs)

15

20

0.8

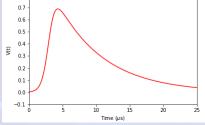
0.7

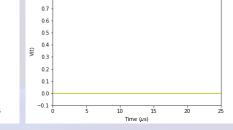
0.6

0.5

0.4

0.3


0.2


0.1

0.0

-0.1

V(t)

0.8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

Ó

V(t)

20

25

15

Μ

R

Time (µs)

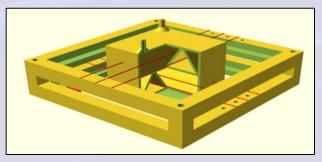
15

10

5

20

25


IOP APP - HEPP 2018

March 26-28

25

Future Plans

- Print more tubes to optimise print process **reliability** and to investigate **repeatability**.
- Print tubes containing cathode structure using either conductive filament or conductive pastes.
 - New printer just arrived with these capabilities
- Advance onto TPCs and MPGCs using Conductive Inkjet Printing for electrode structures.
 - Silver nanoparticles suspended in ink in standard Inkjet Printer
- Develop method of printing plastic scintillator.

Motivation

000

1. Hohlmann M. Printing out Particle Detectors with 3D-Printers – a Potentially Transformational Advance for HEP Instrumentation. 2013

1. Outgassing Search and Report Help [Internet]. Outgassing.nasa.gov. Available from: https://outgassing.nasa.gov/help/og_help.html

 Ahmed S. Physics and engineering of radiation detection. Amsterdam: Academic Press; 2007