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Motivation

σ
(NkLO)
pp→X = Σa,b

∫
x1x2fa(x1)(NkLO)σ̂

(NkLO)
ab→k fb(x2)(NkLO)D(k → X )

Factorisation theorem: Separation of long scale and short scale physics.
Introduces a factorisation scal µF . Long scale physics→ Parton Distribution
Functions.
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Parton Distribution Functions

Heuristically, PDFs are the momenta distribution of quarks, inside the proton; the
internal structure of the proton at high energies. Different distributions at different
energy scales.
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Why QED?

• Calculate hard processes to a given order in pQCD.

σ̂ = σ̂Born

(
1 +

αS

2π
σ̂(1) +

α2
S

2π
σ̂(2) +

α3
S

2π
σ̂(3) + ...

)

• Need to match the PDF accordingly to maintain a consistent, renormalised,
definition of the total dσ

dΩ .

α2
S ' αEM → Expect QED to become relevant

Introduces the photon as an interacting parton.
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Renormalisation

Quantities in Quantum Field Theory change with the energy scale at which they
are probed.
Example: The Electromagnetic coupling constant (and other force couplings)

Leads to the running of the coupling constant.
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DGLAP

• PDFs: f (x , µF ) loosely, the probability within the proton for a particle (quark,
gluon, photon) to carry momentum fraction 0 < x < 1. We require dσ

dΩ ’s to be
independent of µF .

• DGLAP equation:

µF
d

dµF
fi (x , µ) =

αS

2π

∑
j

Pij(αS(µ))⊗ fj

where

(f ⊗ g)(x) =

∫ 1

x

dy

y
f

(
x

y

)
g(y)

• Pij calculated at a particular order. Including QED processes introduces a
photon. In principle we only need to fit the PDFs at some initial scale Q0 then
use DGLAP to evolve them for all other Q2 (Scale of hard process).

5



DGLAP

• PDFs: f (x , µF ) loosely, the probability within the proton for a particle (quark,
gluon, photon) to carry momentum fraction 0 < x < 1. We require dσ

dΩ ’s to be
independent of µF .

• DGLAP equation:

µF
d

dµF
fi (x , µ) =

αS

2π

∑
j

Pij(αS(µ))⊗ fj

where

(f ⊗ g)(x) =

∫ 1

x

dy

y
f

(
x

y

)
g(y)

• Pij calculated at a particular order. Including QED processes introduces a
photon. In principle we only need to fit the PDFs at some initial scale Q0 then
use DGLAP to evolve them for all other Q2 (Scale of hard process).

5



DGLAP

• PDFs: f (x , µF ) loosely, the probability within the proton for a particle (quark,
gluon, photon) to carry momentum fraction 0 < x < 1. We require dσ

dΩ ’s to be
independent of µF .

• DGLAP equation:

µF
d

dµF
fi (x , µ) =

αS

2π

∑
j

Pij(αS(µ))⊗ fj

where

(f ⊗ g)(x) =

∫ 1

x

dy

y
f

(
x

y

)
g(y)

• Pij calculated at a particular order. Including QED processes introduces a
photon. In principle we only need to fit the PDFs at some initial scale Q0 then
use DGLAP to evolve them for all other Q2 (Scale of hard process).

5



DGLAP

• PDFs: f (x , µF ) loosely, the probability within the proton for a particle (quark,
gluon, photon) to carry momentum fraction 0 < x < 1. We require dσ

dΩ ’s to be
independent of µF .

• DGLAP equation:

µF
d

dµF
fi (x , µ) =

αS

2π

∑
j

Pij(αS(µ))⊗ fj

where

(f ⊗ g)(x) =

∫ 1

x

dy

y
f

(
x

y

)
g(y)

• Pij calculated at a particular order. Including QED processes introduces a
photon. In principle we only need to fit the PDFs at some initial scale Q0 then
use DGLAP to evolve them for all other Q2 (Scale of hard process).

5



LUXQED

For the photon, we can express starting distribution γ(x ,Q0 = 1GeV 2) in terms of
experimentally determined structure functions (ArXiv: 1607.04635, 1607.04266).

Errors (/ 5%) are then propagated from measurements of F2 structure function,
which is experimentally well determined from DIS experiments (e.g. HERA).
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MMHTQED

We have developed an equivalent photon PDF with full QED DGLAP evolution of
all partons.
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Comparison with LUX

Good agreement with LUXQED.
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Neutron Photon PDF

We have also produced an equivalent set of Neutron PDFs include an equivalent
Neutron Photon PDF.
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Measured effects on quarks

Calculated the effects of QED on parton momenta within the proton.

10



Higher orders

Included mixed order O(αSα) and O(α2) corrections.
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Uncertainty Contributions

Relative contributions to the photon PDF uncertainty well controlled.
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Phenomenological Importance

Anticipated experimental sensitivity to Electroweak correction
Process Observable(s) Estimated %

difference(s)

Low mass W/Z
production

Charge asymmetry,
dilepton mass
uncertainty

∼1%,∼3%

High mass VV
production

WW pair
production rate

∼2%

Higgs + W
Differential PT Higgs
distribution

∼10%

High mass Drell-Yan
Dilepton mass
spectrum

∼1-16%

Higgs production
via VBF

γ induced cross
section

∼1%

Top pair production
Total, differential
cross sections

∼2%,∼10%
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Summary

• PDFs are an essential part of cross section calculations at the LHC

• Increasing needs on theoretical precision motivate the inclusion of QED as
well as QCD in calculations.

• The MMHT group has produced competitive QED partons and investigated
their effects.

• To be released later this year.
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Thank you for your attention
Any questions?
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