Constraining New Physics with Standard Model measurements

David Yallup March 27, 2018

IOP Joint APP and HEP Conference 2018

- Results What is the goal of the experimental programs at the LHC (Specifically ATLAS and CMS)
 - Measure known phenomena as accurately as possible.
 - Seach for something new!

• Information

- What do we provide
- What do people want
- Will anyone actually use additional information

• Tools

• Where/How do we best interface to theory

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Model	ί,γ	Jets†	E ^{miss} T	∫£ dt[fb	1 Limit	Reference
$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD QBH} \\ \text{ADD BH indp } \Sigma p_T \\ \text{ADD BH multijet} \\ \text{RS1} G_{KK} \rightarrow \gamma\gamma \\ \text{Built RS} G_{KK} \rightarrow WW \rightarrow qq\ell\nu \\ \text{2UED / RPP} \end{array}$	0 e, μ 2 γ ≥ 1 e, μ - 2 γ 1 e, μ 1 e, μ	1 - 4j -2j $\ge 2j$ $\ge 3j$ -1J $\ge 2b, \ge 3j$	Yes - - - Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mo. 7.7.37 Mpl	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.02017 6 1505.02265 6 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2016-104
$\begin{array}{l} \text{SSM } Z' \to \mathcal{U}\\ \text{SSM } Z' \to \tau\tau\\ \text{Leptophobic } Z' \to bb\\ \text{Leptophobic } Z' \to bt\\ \text{SSM } W' \to \mathcal{U} \\ \text{HVT } V' \to WV \to \text{oppg model}\\ \text{HVT } V' \to WV/ZH \text{ model B}\\ \text{LRSM } W_R' \to bb\\ \text{LRSM } W_R' \to bb \end{array}$	$2 e, \mu$ 2τ $1 e, \mu \ge$ $1 e, \mu$ B $0 e, \mu$ multi-channel $1 e, \mu$ $0 e, \mu$	- 2 b 1 b, ≥ 1,0 2 J 2 b, 0 ·1 j ≥ 1 b, 1 J	- 2) Yes Yes - Yes -	36.1 36.1 3.2 36.1 36.7 36.7 36.1 20.3 20.3	2 mm 4.5 TeV 2 mm 2.5 YeV 2 max 5.5 TeV 2 max 2.3 TeV 7 max 2.3 TeV 7 max 2.5 TeV 7 max 5.1 TeV 7 max 2.5 TeV 7 max 5.1 TeV 7 max 5.5 TeV 7 max 1.5 TeV 7 max 1.5 TeV 7 max 1.5 TeV 7 max 1.7 TeV	ATLAS-CONF-2517-027 ATLAS-CONF-2017-009 1603.00791 ATLAS-CONF-2015-014 1705.04786 CEIN-EP-2017-147 ATLAS-CONF-2017-005 1410-4103 1406.0865
Cl qqqq Cl f£qq Cl wutt	_ 2 ∉, μ 2(88)/≥3 ∉,μ	2j 	- Ves	37.0 36.1 20.3	A 21.8 TeV 40. A 40 TeV 40.1 Te A 4.9 TeV 10.1 Te	1703.09217 4TLAS-CONF-2017-027 1504.04605
Axial-vector mediator (Dirac DM Vector mediator (Dirac DM) VV _{XX} EFT (Dirac DM)) 0 e, μ 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} 1-4j\\ \leq 1j\\ 1J_i \leq 1j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	House T.S TeV g ₁ =0.25, g ₁ =1.0, n(χ) < Ruse 1.2 TeV g ₂ =0.25, g ₁ =1.0, n(χ) M ₂ 700 GeV m(χ) < 150 GeV	100 GeV ATLAS-CONF-2017-050 180 GeV 17D4.03848 1608.02372
Scalar LQ 1 st gen Scalar LQ 2 ^{sd} gen Scalar LQ 3 ^{sd} gen	2 e 2 µ 1 e, µ	$\begin{array}{c} \geq 2 j \\ \geq 2 j \\ \geq 1 b, \geq 3 j \end{array}$	- - Yes	3.2 3.2 20.3	LO meas 1.1 TeV β = 1 LO meas 1.0 TeV β = 1 LO meas 640 GeV β = 0	1605.06035 1605.06035 1508.04735
$ \begin{array}{l} VLQ \ TT \to Ht + X \\ VLQ \ TT \to Zt + X \\ VLQ \ TT \to Wb + X \\ VLQ \ BB \to Hb + X \\ VLQ \ BB \to Hb + X \\ VLQ \ BB \to Mt + X \\ VLQ \ QB \to Wt + X \\ VLQ \ QQ \to Wq Wq \end{array} $	0 or 1 e,µ; 1 e,µ ≥ 1 e,µ ≥ 2/≥3 e,µ 1 e,µ ≥ 1 e,µ ≥	$\geq 2 b, \geq 3$ $\geq 1 b, \geq 3$ $1 b, \geq 1 J/2$ $\geq 2 b, \geq 3$ $\geq 2/\geq 1 b$ $1 b, \geq 1 J/2$ $\geq 4 j$	j Yes j Yes 2j Yes j Yes - 2j Yes Yes	13.2 36.1 20.3 20.3 36.1 20.3	Tenso 1,2 TeV (P(T - H2) = 1) Tesso 1,5 TeVI (P(T - H2) = 1) Tesso 1,55 TeVI (P(T - H2) = 1) Tesso 1,55 TeVI (P(T - H2) = 1) Tesso 1,55 TeVI (P(T - H2) = 1) Tesso 1,35 TeVI (P(T - H2) = 1) Tesso 1,35 TeVI (P(T - H2) = 1) Tesso 1,35 TeVI (P(T - H2) = 1)	ATLAS-CONF-2016-104 1705-10751 CERN-EP-2017-094 1505-04306 1409-5500 CERN-EP-2017-094 1508-04261
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow W2$ Excited quark $b^* \rightarrow W2$ Excited lepton t^* Excited lepton τ^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2j 1j 1b,1j 1b,20j -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	4 Terms 6 D TeV Terms orly if and if A to m(i orly if and if	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-009 1510.02054 1411.2921 1411.2921
LRSM Majorana v Higgs triplet H ⁺⁺ → <i>l</i> (<i>t</i> Higgs triplet H ⁺⁺ → <i>l</i> (<i>t</i> Monotoe (non-res prod) Multi-charged particles Magnetic monopoles	2 e, µ 2,3,4 e, µ (SS) 3 e, µ, τ 1 e, µ - - S = 8 TeV	2j - 1b - - - - -	- Yes - TeV	20.3 36.1 20.3 20.3 20.3 7.0	Aff State Aff State (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form (m) - 2-14 form (m(h)) - 2-14 form (m(h)) - 2-14 form	ing 1506.06020 ATLAS-COMF-2017-053 1411.2921 1410.5404 1504.04188 1502.08059
	Bodd ADD cons + get ADD conserves of ADD conserve	$ \begin{array}{ c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c } \hline Hold & f, y & Jetter \\ \hline A Control of the second second$	$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model 6, r. y Jess 7 (r) Limit Add Consensing r 2 r, r - 0 0 r, r 0 r, r </td

- A huge array of analyses at ATLAS and CMS searching for new physics ([L] ATLAS exotics summary)
- A huge array of no observed excesses, can only constrain models
- How do we use this to comment on arbitrary new physics models not originally considered?
- What information do we provide to interpret these results?

*Only a selection of the available mass limits on new states or phenomena is show † Small-radius (large-radius) jets are denoted by the letter j (J).

Results - Measuring the known

- An equally large array of unfolded particle level measurements
- This information can also be used to constrain new physics (important distinction: can't search here!)
- How do we go about this?

HUGE development of tools for automated calculations of LHC physics, success depends on the toolchain!

THE MODELS

- Feynrules, de facto language to describe new physics Lagrangians
- Herwig7 (MG,Sherpa etc.) Generate full LHC simulations of these events

THE DATA

- Rivet(+HepData), plugin directly on generator output to replicate analysis definition
- · Experimentally validated plugins, no question of ambiguity on acceptance

THE LIMITS

Logo pending...

Contur, Analysis framework plugin directly to Rivet output. Analyse deviations from data

Contur - A Jetty Example

- Zoom in on one of those SM summary measurements, Inclusive Jets @ 7TeV CMS, 1406.0324
- Rivet plugin used to replicate experimental definition for generator studies, here validation provided by Herwig authors, Validation summary
- We have a good understanding of the SM here
- We have a fast flexible way of reproducing the theory here

Contur - A Jetty Example Model

One of the simplest SM extensions, often discussed for the context of Dark Matter searches, LHCDMWG - 1603.04156

Simplified model forms 4D model parameter space: $g_q, g_{DM}, M_{DM}, M_{Z'}$. Easy to explore!

Searches in the collider context give MET-ey or Jet-ey signatures

95% CL contour (pink), for a simplified dark matter model. Theoretical bound from perturbative unitarity (blue)

- Model studied in detail in the original Contur paper, 1606.05296
- Rolling updates with expanded data shown here from the Contur Webpage
- Fix two parameters, $g_q = 0.25, g_{DM} = 1.0$, equivalent to the ATLAS/CMS benchmarks, 2D scan in $M_{DM}, M_{Z'}$
- Profile likelihood fit across all datasets
- Report exclusion of model in terms of CL_s
- Build 95% CL exclusion contour
- Maps out the collider DM landscape!

Contur - A Jetty Example Back to data

BSM vs data cross section comparison for 1D parameter scan

- Again, Inclusive Jets @ 7TeV CMS, 1406.0324
- This time apply analysis definition to BSM model, scan in 1 parameter dimension, $M_{Z'}$
- BSM produces shapes with distinguishable kinematics, lead jet $p_T\approx M_{Z'}/2$
- Stack reveals bump hunting idea

 $(\mathsf{BSM}+\mathsf{data})/\mathsf{data}$ cross section comparison for 1D parameter scan

- Again, Inclusive Jets @ 7TeV CMS, 1406.0324
- This time apply analysis definition to BSM model, scan in 1 parameter dimension, $M_{Z'}$
- BSM produces shapes with distinguishable kinematics, lead jet $p_T\approx M_{Z'}/2$
- Stack reveals bump hunting idea

 CL_{s} of a 2D scan of parameter space points

- Model studied in detail in the original Contur paper, 1606.05296
- Rolling updates with expanded data shown here from the Contur Webpage
- Fix two parameters, $g_q = 0.25$, $g_{DM} = 1.0$, equivalent to the ATLAS/CMS benchmarks, extend 1D scan shown previously to 2D scan in M_{DM} , $M_{Z'}$
- Profile likelihood fit across all datasets
- Report exclusion of model in terms of CL_s

Contur - A recent example analysis

A different model, Light Scalars at the LHC 1607.08653, contributions made to Les Houches proceedings (pending).

Example: CP-Even scalar has gauge sector interactions specified by the following Lagrangian:

$$\mathcal{L}_{\text{eff}} \supset \phi \left(\frac{1}{\Lambda} G^{\mu\nu\,a} G^a_{\mu\nu} + \frac{1}{\Lambda} W^{\mu\nu\,I} W^I_{\mu\nu} + \frac{1}{\Lambda} B^{\mu\nu} B_{\mu\nu} + \frac{1}{\Lambda} |D^{\mu} H|^2 \right)$$

- EFT Model behaviour dictated by 2 parameters in this case, suppresion scale Λ , scalar mass m_{ϕ}
- Well motivated extension of many BSM models is an extended Higgs Sector (e.g. 2HDM)
- Low mass scalars sector not fully excluded by low mass diphoton searches
- Decays to massive dibosons kinematically unfavoured in these mass ranges \rightarrow predominant decays to diphoton

Contur - Light Scalars

- Gain exclusion limits from 7/8TeV gauge boson + $\gamma(\gamma)$ measurements.
- Here show ATLAS 8TeV $Z\gamma(\gamma)$, 1604.05232
- Perhaps less expected, typically would only consider diphoton measurements/searches
- The power of our approach relies on a huge breadth of complementary analyses, can catch atypical channels

(BSM + data) vs data cross section comparison for 1 model point in 0 jet bin of ATLAS Z($\nu\nu)+\gamma$ as a function of E_T^γ

Contur - Light Scalars

 CL_s of a 2D scan of parameter space points

- Perform 2D Parameter scans (this case for CP-Even scalar) utilising as many Rivet plugins as possible
- Build orthogonal combinations of datasets
- Profile likelihood fit across all datasets
- Report exclusion of model in terms of CL_s

Contur - Light Scalars

95% CL contour (pink), for a CP even light scalar

- Perform 2D Parameter scans (this case for CP-Even scalar) utilising as many Rivet plugins as possible
- Build orthogonal combinations of datasets
- Profile likelihood fit across all datasets
- Report exclusion of model in terms of CL_s
- Build 95% CL exclusion contour
- Maps out the low mass scalar landscape!

Hopefully this has demonstrated some interesting ideas:

- We have fast simulations of calculable theoretical quantities through SM measurements, this can form a robust net of measured parameters to confront BSM simulation with using Contur \rightarrow the process is validated
- We can use these tools to demonstrate interesting phenomenological results \rightarrow the process can tell us interesting/unexpected things about physics

Thanks for Listening!

Backup

Roughly speaking need to know two quantities to translate a particle level simulation to a count in a detector volume:

$$N_{\rm obs} = L \cdot \sigma_{\rm Total} \cdot A \cdot \epsilon \tag{1}$$

- A Acceptance, effectively the analysis definition, can be simple
 - Do we provide code or ATLAS/CMS approved analysis description, Rivet?
 - More complicated analyses, BDTs etc, impossible?
- ϵ Efficiency, detector simulation
 - Usually done by theorists with approx fast sims, e.g. Delphes
 - ATLAS approved fast sims? Not going to happen?
 - Other ways around this, Folding matricies?

The community as devised a variety of ways to provide additional information (Efficieny maps, generic resonance/cross section limits, etc.) But it is a difficult and pressing question to keep on top of

PROS

- "Model Independent" Very dependent on the SM, but this seems the best model to be dependent on!
- Fast, no expensive detector simulation
- Builds on independent, actively developed codes, Very little bespoke information needed.
- Builds on already established route to market for experimental data, and feeds back directly on this pipeline

CONS

- Unfolded measurement data arrives slower than a search
- Limited analysis coverage (for now?) for some typical search regions (E.g. Large MET)
- Currently limited to profiling purely based on Data and BSM simulation, not entirely a con but a current internal limitation.