

Angela Romano, University of Birmingham (axr@hep.p<mark>h.bham.ac.uk</mark>

The NA62 experiment

High precision fixed-target Kaon experiment at CERN SPS

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

Angela Romano, Joint Annual HEPP and APP Conference, 26-03-2018

MADZ

Motivations for K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$

✓ High sensitivity to New Physics

non-parametric uncertainty

✓ FCNC process forbidden at tree level

✓ Highly CKM suppressed (BR ~ $|V_{ts}*V_{td}|^2$)

 \checkmark Extraction of V_{td} with minimal (few %)

Box & Penguin (one-loop) diagrams

Theoretically very clean:

- ✓ dominant short-distance contribution
- ✓ hadronic matrix element extracted from precisely measured BR(K⁺ → $\pi^{o}e^{+}\nu$)

Independent determination of unitary triangle for K meson system (with neutral mode)

 $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{THEORY} = (0.84 \pm 0.10) \times 10^{-10}$

- BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu})_{EXP} = 1.73^{+1.15}_{-1.05} \times 10^{-10}$ [E787/E949, Phys.Rev.Lett.101, 191802, 2008]
- based on 7 candidates
- stopped Kaon technique

Discrimination among NP scenarios

[Buras, Buttazzo, Knegjens, JHEP11(2015)166]

MA62

Signal K⁺
$$\rightarrow \pi^+ \nu \overline{\nu}$$
:
m²_{miss} = (P_K - P _{π})²

 $\mathbf{K}^{\dagger} \rightarrow \pi^{\dagger} \pi^{0} (\gamma)$

Process	Branching ratio
$K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$	63.5%
$K^+ \rightarrow \pi^+ \pi^0(\gamma)$	20.7%
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	5.6%
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$	4.3×10^{-5}

Main kaon decay backgrounds

Sign & Bkg control regions kept blind throughout the analysis

Background rejection relies on **Kinematics** ($15 \text{GeV/c} < P_{\pi} < 35 \text{GeV/c}$; m^2_{miss}) used in conjunction with Particle ID, Veto systems and sub-ns timing

- SPS protons on Be target (PoT): 400 GeV/c, ~10¹² PoT/sec , 3.5 sec/spill
- → Un-separated hadron beam: $\pi^+(70\%)/K^+(6\%)/p(24\%)$
- ➢ 750MHz beam rate @GTK (45MHz K⁺ component)
- \succ K⁺: 75GeV/c (±1%), divergence < 100µrad, (60 x 30) mm² transverse size
- $\succ\,$ 10% of K⁺ decays in 60 m fiducial volume (FV)

Keystones from detector design:

- Timing between sub-detectors ~ O(100ps)
- ► Kinematic rejection ~O(10⁴) for $\mathbf{K}^+ \rightarrow \pi^+ \pi^0$, $\mathbf{K}^+ \rightarrow \mu^+ \nu$ bkg channels
- ▶ Particle ID: muon suppression (from $K \rightarrow \mu^+ \nu$) > 10⁷
- ▶ Photon veto: $\pi^{0} \rightarrow \gamma \gamma$ suppression (from K⁺ $\rightarrow \pi^{+}\pi^{0}$) > 10⁷

$\succ \pi^+$ identification > Photon rejection

Multi-track rejection

Selection criteria:

Signal Region 1 (R1), Signal Region 2 (R2)

 $m_{miss}^2 = m_{miss}^2$ (GTK, STRAW) = ($P_K - P_{\pi}$)²

 m_{π} mass hypothesis

100

90

p_+ [GeV/c]

20

30

 10^{4}

10³

 10^{2}

10

K⁺→π⁺v⊽ Signal Regions

Consider different projections of $m_{miss}^2 = (P_K - P_{\pi})^2$

> m²_{miss} (GTK, STRAW)
 > m²_{miss} (GTK, RICH)
 > m²_{miss} (Beam, STRAW)

Address non-gaussian tails in the bkg distributions due to mis-reconstruction

Kinematic suppression:

- ➤ measured on data
- ➤ samples selected using calorimeters
- ≻ **K**⁺→ $\pi^{+}\pi^{0}$ ~ 1 · 10⁻³ (resolution tails)

 $\blacktriangleright \mathbf{K} \rightarrow \boldsymbol{\mu}^+ \boldsymbol{\nu} \sim 3 \cdot 10^{-4}$

Single Event Sensitivity

0.12 0.1	$\mathbf{K}^{*} ightarrow \pi^{*} u \overline{v} \mathbf{M} \mathbf{C}$	Process	Expected events in $R1 + R2$
0.08 ق ۵.06 ع		$K^+ \to \pi^+ \nu \overline{\nu} \ (SM)$	$0.267 \pm 0.001_{stat} \pm 0.029_{syst} \pm 0.032_{ext}$
^{۲ ا ا} ا	R2	$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
0.02	R1	$K^+ \to \mu^+ \nu_\mu(\gamma) $ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
-0.02		$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
-0.04	Signal Acceptance: 4%	$K^+ \to \pi^+ \pi^- \pi^+$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
-0.06 -0.08		Upstream background	$0.050^{+0.090}_{-0.030}$
0.00	15 20 25 30 35 π^+ momentum [GeV/c]	Total background	$0.15 \pm 0.09_{stat} \pm 0.01_{syst}$

Control trigger $K^+ \rightarrow \pi^+ \pi^0$ used for normalisation: acceptance 10% Number of kaon decays (N_K) in fiducial volume

• $N_{K} = 1.21(2) \times 10^{11}$

Single Event Sensitivity (SES)

• SES = $(3.15 \pm 0.01_{\text{stat}} \pm 0.24_{\text{syst}}) \times 10^{-10}$

> NA62 \Lambda

> NA62 []

- One event observed in signal region R2
- Full exploitation of the CLs method in progress
- > The results are compatible with the Standard Model

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) < 11 \times 10^{-10} @ 90\% CL$$

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$$

RICH ring for the event

For comparison:

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) = 28^{+44}_{-23} \times 10^{-11} @ 68\% CL$ $BR(K^+ \to \pi^+ \nu \overline{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$ $BR(K^+ \to \pi^+ \nu \overline{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$

Conclusions

- → SM sensitivity for K⁺→ $\pi^+\nu\bar{\nu}$ reached with the completion of 2016 data analysis
- ➤ The novel NA62 decay-in-flight technique works
- ➢ One event observed in 2016 data (expect 0.3 SM in R1+R2)

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$$

Conclusions

- ▷ SM sensitivity for K⁺→ $\pi^+ v \bar{v}$ reached with the completion of 2016 data analysis
- The novel NA62 decay-in-flight technique works
- ➢ One event observed in 2016 data (expect 0.3 SM in R1+R2)

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$$

Prospects:

- Analysis of data collected in 2017 started
- data sample x20 larger than presented stats
- expect improvements on signal acceptance, efficiency and S/B ratio
- Data taking scheduled for April-November 2018
- Expect ~ 20 SM events before LS2
- Data taking after 2018 to be approved

NA62 "Luminosity"

 $13 imes 10^{11}$ ppp on target (40% nominal)

 ${\sim}1 \times 10^{11} \, \text{K}^+$ decays useful for $\pi \nu \nu$

2017 run

 20×10^{11} ppp on target (60% nominal)

MA**52**

 $> 3 imes 10^{12} \ \mathrm{K^{+}}$ decays collected

Single Event Sensitivity Results

~ NA62 👌

 $SES = (3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \times 10^{-10}$

		Source	$\delta SES (10^{-10})$
		Random Veto	± 0.17
Λ constance V^+ τ^+	40 01	N_K	± 0.05
Acceptance $K^+ \rightarrow \pi^+ \nu \nu$	4.0 ± 0.1 0.87 ± 0.2	Trigger efficiency	± 0.04
PNN trigger efficiency		Definition of $\pi^+\pi^0$ region	± 0.10
Random veto	0.76 ± 0.04	Momentum spectrum	± 0.01
		Simulation of π + interactions	± 0.09
		Extra activity	± 0.02
		GTK Pileup simulation	± 0.02
		Total	± 0.24

- Data driven background estimation
- Control region validation: 1 event observed (1.5 expected)

$$N_{\pi\pi(\gamma)}^{bg} = 0.064 \pm 0.007_{stat} \pm 0.006_{syst}$$

- Data driven background estimation
- Control region validation: 2 event observed (1.1 expected)

$$N^{bg}_{\mu
u(\gamma)} = 0.020 \pm 0.003_{stat} \pm 0.003_{syst}$$

R.Marchevski @ Moriond EW2018

- Background estimated with 400 million MC generated $K^+ \rightarrow \pi^+\pi^-e^+\nu_e$ decays
- Good agreement across the 5 validation samples

$$N_{K_{e4}}^{bg} = 0.018_{-0.017}^{+0.024}|_{stat} \pm 0.009_{syst}$$

Upstream background

R.Marchevski @ Moriond EW2018

ARDUA ALTA

