

Testing Lepton Universality with a measurement of R_{pK} in LHCb

Ross Glew

On behalf of the LHCb collaboration

Lepton universality test at the LHCb

- Due to Lepton Universality (LU) the ratios of branching fractions $R_{K^{*0}}$ and R_{K} , for the decays $B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$ and $B^{+} \rightarrow K^{+}\ell^{+}\ell^{-}$, are predicted to be unity in the $1.1 \text{GeV}^{2}/c^{4} < q^{2} < 6 \text{GeV}^{2}/c^{4}$ by the SM [1].
- The measurement of the $R_{K^{*0}}$ (in two q^2 bins) and R_K have found values 2.1-2.3, 2.4-2.5 and 2.6 standard deviations away from SM prediction.
- Hints at New Physics (NP) and the presence of new particle, such as heavy gauge boson Z' or leptoquarks!
- Investigation of similar ratios will provide information on LU-violation.

Results from recent LU test [2]

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} \qquad R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}$$

The $\Lambda_b^0 \to pK^-\ell^+\ell^-$ decay

- Flavour changing neutral current decay governed by quark level process $b \to s \ell^+ \ell^-$.
- Forbidden at tree level in SM, entering at loop level through electroweak penguin and box diagrams.
- Highly supressed and very sensitive to NP.
- •To reduce systematic uncertainties the, well studied [3], control channels $\Lambda_b^0 \to p K^- J/\psi (\to \ell^+ \ell^-)$ are used to calculate the double ratio, R_{pK} .
- Since NP is not expected to effect the control channel the ratio, $R_{J/\psi}$, should equal one. This is used to check the validity of the analysis strategy.

$$R_{pK} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)/\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}{\mathcal{B}(\Lambda_b^0 \to pK^- e^+ e^-)/\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))}; \quad R_{J/\psi} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))} = 1$$

Analysis Strategy: Event Selection

- •LHCb Trigger: See backup slides
- Preselection: Loose cuts to reduce dataset to manageable size (little loss of signal)
- •Particle identification cuts: Use variables from neural network to reduce background
- •Peaking background removal: Vetoing peaking background mass windows
- •Combinatorial background removal: Multivariate analysis

Event Selection

$$R_{pK} = \frac{\mathcal{N}(\Lambda_b^0 \to pK^-\mu^+\mu^-)}{\mathcal{N}(\Lambda_b^0 \to pK^-e^+e^-)} \cdot \frac{\epsilon \left(\Lambda_b^0 \to pK^-e^+e^-\right)}{\epsilon (\Lambda_b^0 \to pK^-\mu^+\mu^-)} \cdot \frac{\mathcal{N}(\Lambda_b^0 \to pK^-J/\psi(\to e^+e^-))}{\mathcal{N}(\Lambda_b^0 \to pK^-J/\psi(\to \mu^+\mu^-))} \cdot \frac{\epsilon (\Lambda_b^0 \to pK^-J/\psi(\to \mu^+\mu^-))}{\epsilon (\Lambda_b^0 \to pK^-J/\psi(\to e^+e^-))};$$

Analysis strategy: Yield Extraction

- Fit mass distribution after selection to extract yields for control and rare modes
- To extract corresponding branching fraction must estimate the trigger, reconstruction and selection efficiencies
- First estimate branching fraction ratio for control channel to check it is unity
- Then develop procedure for rare decay
- Use $3fb^{-1}$ from 2011-2012 and $\sim 2fb^{-1}$ from 2015-2016
- This presentation will outline the selection procedure and yield extraction for both control channels: $\Lambda_b^0 \to pK^-J/\psi(\to \ell^+\ell^-)$. The data used here corresponds to $762~pb^{-1}$ and $638pb^{-1}$ of integrated luminosity for muons and electrons respectively.

Particle Identification (PID)

- A neural network takes information from tracking and PID systems to calculate the probability for a track to be a particular particle (*ProbNN* variables)
- •For example ProbNNK is probability to be Kaon.
- •Cut values optimized by maximising the figure of merit defined as $FoM = \frac{S}{\sqrt{S+B}}$.
- •Find S and B from fits to Λ_b^0 mass distribution after cuts applied.
- Kaon and proton cut optimised simultaneously.

Particle	Cut
p	$ProbNNp \cdot (1 - ProbNNK) \cdot (1 - ProbNN\pi) > 0.16$
K	$ProbNNK \cdot (1 - ProbNNp) > 0.09$
μ	$ProbNN\mu > 0.2$
е	ProbNNe > 0.2

Peaking background rejection

- When PID fails background decays can be reconstructed as signal.
- To search for background assign a final state particle a different mass hypothesis and recalculate parent particle mass.
- •Main contributions:
 - $B_s^0 \to K^+K^-J/\psi(\to \ell^+\ell^-)$: Mis-ID $[K \to p]$
 - $B_d^0 \to K\pi J/\psi(\to \ell^+\ell^-)$: Mis-ID $[\pi \to p]$ or $[K \to p, \pi \to K]$
 - $\Lambda_b^0 \to pK^-J/\psi(\to \ell^+\ell^-)$: Mis-ID $[K \to p, p \to K]$
- How to deal with backgrounds:
 - 1. Veto a known intermediate or mother particles mass window.
 - 2. Do not place further cuts but instead include in fitting procedure.

Peaking background vetoes

- Two veto's used in the analysis.
- Main contribution from B_S^0 background have ϕ resonance i.e. $B_S^0 \to \phi(\to K^+K^-)J/\psi$
- Place veto around the $\phi(1020)$ mass:
 - $|m(pK)_{p\to K} 1020MeV| > 12MeV$
- Also contribution from $B^{\pm} \to K^{\pm} I/\psi$
 - $m(K\ell^+\ell^-) < 5200 {\rm MeV}$ and $m(p\ell^+\ell^-)_{p \to K} < 5200 MeV$
- Contributions from Λ_b^0 , B_d^0 and B_s^0 (without ϕ resonance) still remain!
- Peaking backgrounds not removed by mass vetoes will be included in fit, with their shapes obtained from MC

Combinatorial Background

- To reject combinatorial background a multivariate analysis tool is used.
- A Boosted Decision Tree (BDT) is first trained on signal and background proxy events.
- Signal training sample: $\Lambda_b^0 \to pK^-J/\psi(\to \ell^+\ell^-)$ reweighted MC events.
- Background training sample: Real data sideband with $m(pK^-\ell^+\ell^-) > 5800 MeV$.
- 21 kinematic variables used.
- Optimal method found by maximising area under ROC curve (top right).
- Cut placed on BDT output

Yield Calculation

- Calculate yields from maximum likelihood fits to the Λ_b^0 mass spectrum.
- Signal shape constrained from MC
- Shapes included in fits:
 - ➤ Muon signal: Double Crystal Ball (CB)
 - > Electron: 3CB +2 Gaussians
 - Combinatorial: Exponential
- Shape obtained from B_d^0 respective MC samples using RooKeysPdf

Muon Fit

- Signal Shape: Bifurcated CB
 - > Fix tail parameters from MC
 - width/mean free
- Yield: $\sim 14600 (762pb^{-1})$

Next steps towards mesurment of $R_{I/\psi}$ with LHCb Run2 data:

- Calculate efficiencies of the selection procedure to obtain efficiency corrected yield
- Study of systematic uncertainties

Electron Fit

- Signal shape depends on how many photon used in Bremsstrahlung recovery procedure
 - \triangleright Cat 0: 0 Bremsstrahlung γ used, Shape: CB
 - \triangleright Cat 1: 1 Bremsstrahlung γ used, Shape: CBG
 - \triangleright Cat 2: >2 Bremsstrahlung γ used, Shape: CBG
- Yield: $\sim 3500 (638pb^{-1})$

Summary and next steps

- ullet Previous LU results from LHCb show deviations from SM. Measurement of R_{pK} will provide an additional test to LU
- The control channels are used to establish the analysis procedure and to reduce systematic uncertainties, similar procedure then used for rare mode
- The main sources of background and the rejection procedure for the control channels:
 - mis-ID's.
 Peaking background.
 PID variables & mass vetoes
 - Combinatorial. Multivariate analysis (BDT)
- The yield calculation for the control channels. \longrightarrow Λ_b^0 invariant mass fits
- •The future work needed:
 - Efficiency calculations
 - Calculation of systematic uncertainties

Backup Slides

Trigger

Muons	Electrons		
LOMuon = LOMuonDecision LODiMuon LOHadron = LOHadron && !(LOMuon) LO = LOMuon LOHadron	LOElectron = L1, L2_LOElectronDecision LOHadron = Kaon, Proton_HadronDecision && !(LOElectron) LOTIS = LOGlobalTIS && !LOHadron && !LOElectron		
HLT1 = Hlt1TrackMVA, Hlt1TwoTrackMVA, Hlt1TrackMuonMVA, Hlt1TrackMuon, Hlt1SingleMuonHighPT, Hlt1DiMuonLowMass, Hlt1DiMuonHighMass	Hlt1 = Hlt1TrackMVADecision, Hlt1TwoTrackMVADecision		
Hlt2 = Not yet applied here due to problems with the data tuple	Hlt2 = Not yet applied here due to problems with the data tuple		

Preselection

• Stripping 28r1; lines Bu2LLK_eeLine2 and Bu2LLK_mmLine (CNAF files missing)

Muon		Electron		
$p_T(K)$	$(Y), > 250 MeV p_T(P) > 400 MeV, p_T(\mu) > 800 MeV$	$p_T(K)$, > 250MeV $p_T(P)$ > 400MeV, $p_T(\mu)$ > 450MeV		
	$2900 < m(J/\psi) < 3200$	$1000 * \sqrt{6} < m(J/\psi) < 1000 * \sqrt{11}$		
F	Proton_HCAL_region>=0, Kaon_HCAL_region>=0	Proton_HCAL_region>=0, Kaon_HCAL_region>=0		

BDT variables

	Λ_b^0	Λ^*	р	К	L1	L2
PT	+	+	Min and sum of two		Min of two	
ETA			Sum of two			
Р			+			
IPCHI2	+	+	Min and sum of two		Min and sum of two	
DIRA	+					
FDCHI2	FDCHI2 +			dilepton		
LOKI_DTF_CHI2NDOF	+					
ENDVERTEX_CHI2	+	+				

^{*}Also $p_T(dilepton), \ p_T(\Lambda^*), \ \frac{p(dilepton) - p(p) - p(K)}{p(dilepton) + p(p) + p(K)}$

Partially reconstructed background

• Partially reconstructed background from $\Lambda_b^0 \to pK^-J/\psi(\to \ell^+\ell^-)X$, where $X = \gamma, \pi^0$ is lost.

• Place cut on $m(pK^-J/\psi(\rightarrow e^+e^-))_{Constr\ J/\psi} > 5500 MeV$

Bremsstrahlung

- •Also reduced resolution of Λ_b^0 mass in electron mode due to Bremsstrahlung radiation.
- Use HOP variables.
- Exploits the fact $\overline{P_T}(pK^-) = -\overline{P_T}(e^+e^-)$ for signal decays.

•
$$\alpha_{HOP} = \frac{P_T(pK^-)}{P_T(e^+e^-)}; \bar{P}^{corr}(e^+e^-) = \bar{P}(e^+e^-).$$

- Recalculate Λ_b^0 mass with corrected electron momentum.
- $m(\Lambda_b^0)_{HOP} > a_1 + a_2 \log(\Lambda_b^0 Flight Distance \chi^2).$
 - $a_1 = 3950$, MeV $a_2 = 108$.

