

Measurement of the branching fractions and form factors of $K^+ \rightarrow \pi^0 l^+ \nu_l$ decays

Joint APP and HEPP IoP Annual Conference 26/03/2018

Stoyan Trilov University of Bristol

- Role of K_{l3} decays
- Branching ratios
- Form factors
- NA62 detector
- Analysis strategy
- Selection
- Variables and correlations
- Conclusion and next steps

Role of semileptonic kaon decays

- $K^+ \to \pi^0 e^+ \nu (K_{e3})$ and $K^+ \to \pi^0 \mu^+ \nu (K_{\mu3})$ provide one of the cleanest way of extracting V_{us}
 - Both the branching fractions and form factors come into the calculation
 - Precise V_{us} determination leads to stringent tests of CKM unitarity
- Experimental inputs contribute slightly more than theoretical ones to the overall V_{us} uncertainty

Semileptonic decay width

•
$$K^+ \rightarrow \pi^0 l^+ \nu$$
 $(l = e, \mu)$ decay width is given by:

$$\Gamma_{Kl3} = \frac{G_F^2 m_K^5}{192\pi^3} C_K^2 S_{EW} \left(|V_{us}| f_+^{K^0 \pi^-}(0) \right)^2 I_{Kl} \left(1 + \delta_{EM}^{Kl} + \delta_{SU(2)}^{K\pi} \right)^2$$

Experimental inputs:

- Γ_{Kl3} kaon branching ratios
- I_{Kl} phase integral, dependent on the form factors

Theory inputs:

- G_F is the Fermi constant
- m_K is the kaon mass
- C_K is the Clebsch-Gordan coefficient (1 for K^0 and $1/\sqrt{2}$ for K^{\pm})
- S_{EW} is the short-distance electroweak correction
- $f_{+}^{K^{0}\pi^{0}}(0)$ is the vector form factor at zero-momentum transfer for $K^{0} \rightarrow \pi^{-}$
- δ_{EM}^{Kl} are the channel-dependent long-distance EM corrections
- $\delta_{SU(2)}^{K\pi}$ is the isospin breaking correction

Semileptonic form factors

•
$$K^+ \rightarrow \pi^0 l^+ \nu$$
 $(l = e, \mu)$ decays are described by:

$$\frac{d^2 \Gamma(K_{l3})}{dE_{l^+} dE_{\pi^0}} = N(Af_+^2(t) + Bf_+(t)f_-(t) + Cf_-^2(t))$$

$$t = (P_K - P_\pi)^2$$

 $N = \text{normalisation factor}$
 $A = m_K (2E_l E_v - m_K (E_\pi^{max} - E_\pi)) + m_l^2 \left(\frac{E_\pi^{max} - E_\pi}{4 - E_v}\right)$
 $f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$
 $B = m_l^2 \left(E_v - \frac{E_\pi^{max} - E_\pi}{2}\right), \quad C = m_l^2 \frac{E_\pi^{max} - E_\pi}{4}$

NA62 detector

Primary beam

• 400 GeV/c protons from SPS

Secondary beam

- 6% kaons, 75 GeV/c momentum
- Rest: 70% pions, 24% protons

Fiducial volume

- 60m region
- 10⁻⁶ mbar vacuum
- ~5 MHz K⁺ decay rate

Sub detectors

- Upstream: KTAG, GTK, CHANTI
- Downstream tracking: STRAW, CHOD, NewCHOD
- PID: RICH, MUV1/2/3
- Photon veto: LAV, LKr, IRC, SAC

Analysis strategy

- Analysis benefits from having precise measurements of the momentum of both parent and daughter particles
- Use $K^+ \rightarrow \pi^+ \pi^0$ as a normalisation channel
- Keep selection the same for the different channels until the very end
 - One (downstream) track selection
 - Kaon selection + downstream track matching
 - π^0 tagging + photon veto
 - Charged track identification

common to $K_{\mu3}$, K_{e3} , and $K_{2\pi}$

Decay	Branching fraction		
$K^+ \to \mu^+ \nu_\mu$	63.56%		
$K^+ \to \pi^+ \pi^0$	20.66%		
$K^+ \to \pi^+ \pi^+ \pi^-$	5.58%		
$K^+ \to \pi^0 e^+ \nu$	5.07%		
$K^+ \to \pi^0 \mu^+ \nu$	3.35%		
$K^+ \to \pi^+ \pi^0 \pi^0$	1.76%		

- Minimum-bias trigger (CHOD)
- Hits in all four chambers of the spectrometer (STRAW)
- Positively charged
- Associated with a signal in CHOD, LKr, and MUV

Track-kaon matching

- Kaon selection
 - Hits in all 3 GKT stations
 - Signal in KTAG, $t_{KTAG} t_{GTK} < 400 \ ps$
- Kaon-track matching
 - In time, $t_{KTAG} t_{trigger} < 10 \ ns$
 - Closest distance of approach (CDA) < 5 mm
 - Decay vertex between 110m and 180m

π^0 tagging + photon veto

- π^0 tagging + photon veto
 - Two photons in the LKr,
 - In time with each other and track, $t_{\pi^0} t_{KTAG} < 5 ns$
 - Distance between each other > 30 cm
 - Reconstructed π^0 mass: $110 \ MeV/c < m_{\pi^0}^{reco} < 150 \ MeV/c$
- Photon veto
 - No in-time signal in LAV, IRC, SAC

- Aim: explore different strategies to distinguish between the 3 decays using few variables and/or detectors
- Variables
 - Missing masses: $m_{miss}^2(l^+) = (P_K P_{l^+})^2$ or $m_{miss}^2(l^+ + \pi^0) = (P_K P_{l^+} P_{\pi^0})^2$
 - Transverse momentum: P_t
 - Energy/momentum (LKr/STRAW): *e*/*p*
- Detectors: ID or veto
 - LKr
 - MUV

$m^2_{miss}(l^+)$, $m^2_{miss}(l^++\pi^0)$ and P_t

• $m_{miss}^2(l^+/l^+ + \pi^0)$: powerful in distinguishing between K_{e3} vs $K_{\mu3}$ / $K_{2\pi}$

- Mass of the electron is well separated from μ/π
- Issue of $\pi \rightarrow \mu$ decay in flight
- Track/ $\pi^0 P_t$
 - *P_t* spectra are distinctive for 2 vs 3 body decays
 - However, highly correlated with missing mass

- m_{K^+} = 493.7 MeV
- m_{π^+} = 139.6 MeV
- m_{π^0} = 135.0 MeV
- m_{μ^+} = 105.7 MeV
- $m_{e^+}=0.5 \text{ MeV}$

Joint APP and HEPP IoP Annual Conference - Stoyan Trilov

After π^0 tagging and photon veto

 $K_{\mu 3}$ sample

 $K_{2\pi}$ sample

Conclusion and next steps

- Conclusion
 - NA62 allows a unique opportunity to measure K_{l3} branching fractions and form factors
 - Reduction of systematics possible due to momentum measurement of incoming and outgoing particles
- Next steps
 - Data/MC studies
 - Explore different combination of cuts/detectors optimise
 - Non-cut approaches
 - Build a likelihood based on 2 or more variables
 - BDT

Spares

Form factor previous results II

Form factor previous results

	Quadratic parametrisation (10 ⁻³)			Pole parametrisation (MeV)		Dispersive parametrisation (10 ⁻³)	
	$\lambda_{+}^{'}$	$\lambda_+^{''}$	$\lambda_{0}^{'}$	M _V	M _S	Λ_+	ln[C]
Central value	23.35	1.73	14.90	894.3	1185.5	22.67	189.12
Statistical error	0.75	0.29	0.55	3.2	16.6	0.18	4.91
Systematic error	1.23	0.41	0.80	5.4	35.3	0.55	11.09
Total error	1.44	0.50	0.97	6.3	35.5	0.58	12.13

See Shkarovskiy talk at ICPPA 2017

V_{us} uncertainty breakdown

Mode	$V_{us}f_+(0)$	% error	BR	τ	Δ	1
K _{e3}	0.2171(8)	0.36	0.27	0.06	0.22	0.05
К _{μ3}	0.2170(11)	0.51	0.45	0.06	0.22	0.06

Uncertainty sources:

- branching ratio measurements (BR)
- lifetime measurements (τ)
- long-distance radiative and isospin-breaking corrections (Δ)
- phase-space integrals from form-factor parameters (/)

M. Moulson, Experimental determination of V_{us} from kaon decays, CKM 2016 Proceedings