Measurement of the CP violating phase, ϕ_s , in Run 2 using $B^0_s \to J\!/\psi\,K^+K^-$

Konstantin Gizdov

PPE Group, University of Edinburgh On behalf of the LHCb Collaboration

Joint APP and HEPP Annual Conference 26th-28th Mar 2018

CP Violation

- CP Violation is a necessary condition for baryon asymmetry in the Universe [A. D. Sakharov, JETP Lett. 5, 24-27 (1967)]
- Present in the Standard Model, but too small by 10^{10} to explain asymmetry
- Heavy-quark hadrons are excellent place to search for new sources of CPV

ϕ_s (CPV in interference of mixing and decay)

 $\mathcal{A}_{CP}(t) = \frac{\Gamma(\bar{\mathrm{B}}^{0}_{\mathrm{s}} \rightarrow f) - \Gamma(\mathrm{B}^{0}_{\mathrm{s}} \rightarrow f)}{\Gamma(\bar{\mathrm{B}}^{0}_{\mathrm{s}} \rightarrow f) + \Gamma(\mathrm{B}^{0}_{\mathrm{s}} \rightarrow f)} \approx \eta_{f} \sin \phi_{s} \sin(\Delta m_{s} t)$

φ_s : phase difference between amplitudes w/ and w/o oscillation in b → cc̄s decays
 Sensitive probe of NP in B⁰_s mixing and decay

- $\phi_s^{SM} = -0.0365 \pm 0.0013$ rad [CKMFitter]
- $\phi_s^{AVG} = -0.021 \pm 0.031 \text{ rad} [\text{HFLAV Summer 2017}]$

LHCb Detector Layout

- Interaction VErtex LOcator ($\varepsilon_{track} \approx 96\%$)
- Ring-Imaging Cherenkov ($\varepsilon_{PID}(K) \approx 95\%$) (*MisID*(K $\rightarrow \pi$) $\approx 5\%$)
- High-granularity Muon ($\varepsilon_{PID}(\mu) \approx 97\%$) (*MisID*($\mu \rightarrow \pi$) $\approx 3\%$)
- 4% of solid angle = 40% of heavy quark cross-section
- Decay time resolution: 45 fs
- Run 1: $\sim 3 \, \text{fb}^{-1}$
- Run 2 (2015 & 2016): ~ 2 fb

Analysis strategy For Run 2 ϕ_s with $B_s^0 \rightarrow J/\psi \phi$

- ${\rm B}^0_{\rm s}
 ightarrow {\rm J}/\psi\,\phi$ is the golden mode for measuring $\phi_{\rm s}$
- Measure ϕ_s , $\Delta \Gamma_s$, $\Gamma_s \Gamma_d$
- Final state is a mixture of CP-even/CP-odd, requires angular analysis to disentangle $CP|J/\psi\phi\rangle_{\ell} = (-1)^{\ell}|J/\psi\phi\rangle_{\ell}$
- $\bullet~\mbox{Good tagging performance to resolve } {\rm B}_{\rm s}^0$ flavour at production
- $\bullet~$ High decay-time resolution to see fast ${\rm B}^0_{\rm s}$ oscillation and determine $\Delta {\it m}_{\it s}$
- Flavour-tagged time-dependent angular fit
- Robust understanding and modelling of background and acceptance effects

Run 2:

- Higher centre-of-mass energy means 2x the heavy quark cross-section
- More statistical power

MC Corrections:

- Data-driven calibration of final-state Particle ID
- Multidimensional Gradient-Boosted Reweighting for Data-MC agreement

Selection:

- Multivariate analysis using Boosted Decision Tree

- Avoid variables that can bias angular or decay time distributions

New Invariant Mass Model:

- Double-sided Crystal Ball function with per-event mass

error as a conditional observable

Peaking Backgrounds

Negative weighted Λ_b^0 Monte-Carlo embedded to subtract remaining background

 $\begin{array}{l} \Lambda_0^b \to J/\psi \, p \mathrm{K}: \\ & - \text{Veto event when } P(\mathrm{K} \to \mathrm{p})_{max} > 0.7 \text{ and consistent with} \\ \Lambda_0^b \pm 15 \mathrm{MeV} \\ \mathrm{B}^0 \to J/\psi \, \mathrm{K}^*(\mathrm{K}\pi): \\ & - \mathrm{Veto event when } P(\mathrm{K} \to \mathrm{K})_{max} < 0.35 \ P(\mathrm{K} \to \pi)_{max} > 0. \end{array}$

- Veto event when $P({\rm K}\to{\rm K})_{max}<$ 0.35, $P({\rm K}\to\pi)_{max}>$ 0.7 and consistent with ${\rm B}^0\pm 15 MeV$

Year	$\Lambda_b^0 \rightarrow J/\psi pK$		${ m B^0} ightarrow { m J}\!/\!\psi{ m K^*}$	
	before veto	after veto	before veto	after veto
2015	4.3%	1.3%	0.2%	0.1%
2016	4.3%	1.2%	0.3%	0.1%

Remaining $\Lambda^0_{\rm b}$ background is statistically subtracted to avoid biasing effect in angular distributions

Decay Time Resolution

Extract the detector resolution from a sample of promptly produced J/ ψ mesons from the PV Resolution Model: Dirac-delta function and two exponentials convolved with a triple Gaussian with common mean + additional component to account for events reconstructed from wrong primary vertex

Calibration: Using single effective Gaussian computed from the dilution of the triple Gaussian

Dilution in bins of
$$\delta_{t}$$
: $D = \sum_{i=1}^{3} f_{i}e^{-\sigma_{i}^{2}\Delta m_{s}^{2}/2}$ Effective Gaussian width $\sigma_{eff} = \sqrt{(-2/\Delta m_{s}^{2}) \ln D}$

$$\int_{i=1}^{9} \int_{i=1}^{9} \int_{i=1$$

Angular Acceptance

Angular acceptance effect is modelled with normalisation weights in the resultant PDF for each individual polarisation state

Angles are computed from a re-fit of fully reconstructed events - resolution improved by 40% Procedure:

- Normalisation weights from fully simulated signal events
- Iterative procedure to correct MC/Data kinematic difference

Projections of angular acceptances for 3 helicity angles

Decay Time Acceptance

New Strategy for Acceptance

Method: Using a high-yield channel with well-know lifetime for data control sample

- Select $B^0 \rightarrow J/\psi K^*(\rightarrow K^+\pi^-)$ control the same way as signal channel $B^0_s \rightarrow J/\psi \phi$
- Obtain acceptance of B⁰ from data using known lifetime
- $\bullet~$ Correct for difference in ${\rm B}^0_{\rm s}$ and ${\rm B}^0$ using MC ratio:

$$\epsilon^{ ext{B}^{0}_{ ext{s}}}_{ ext{data}}(t) = \epsilon^{ ext{B}^{0}}_{ ext{data}}(t) imes rac{\epsilon^{ ext{B}^{0}_{ ext{s}}}_{ ext{sim}}(t)}{\epsilon^{ ext{B}^{0}}_{ ext{sim}}(t)}$$

Flavour Tagging

- $\bullet~$ Crucial to tag $\rm B^0_s$ flavour at production
- Taggers are Neural Nets optimized for Run 1
- Calibration works well with Run 2 data

K. Gizdov (University of Edinburgh) Measurement of the CP violating phase, $\phi_{\rm s}$ UK IOP HEPP, 26th Mar 2018 11/14

Results Data Fit Projections

Summary

To do:

- Finalize systematics
- Unblind results

Expected statistical precision:

•
$$\sigma(\phi_{\rm s}) = 0.042 \, \, {
m rad} \, ({
m Run} \, \, 1: \, 0.049 \, \, {
m rad})$$

•
$$\sigma(\Delta\Gamma_s) = 0.008 \, {\rm ps}^{-1}$$
 (Run 1: 0.0091 ${\rm ps}^{-1}$)

•
$$\sigma(\Gamma_{\rm s} - \Gamma_{\rm d}) = 0.005 \, {\rm ps}^{-1}$$
 (HFLAV: 0.004)

Thank you

Backup

Event Selection

Correct MC before training with:

- PIDCalib
- Gradient Boosted Reweighting to sWeighted data
- Avoid vars that introduce effects difficult to correct:
 - $IP\chi^2(K, \mu)$: angular/time correlation, could impact uniformity of decay time efficiency
 - DIRA(B_s⁰): large decay time acceptance effect

K. Gizdov (University of Edinburgh)

• $P_T(K, \mu)$: large angular acceptance effect

- max Tr $\chi^2/\mathrm{ndf}(\mathrm{K})$
- min Log ProbNNk(K)
- max Tr $\chi^2/\mathrm{ndf}(\mu)$
- min Log ProbNNmu(μ)
- Log ENDVERTEX $\chi^2/\mathrm{ndf}(J/\psi)$
- *P*_T(φ)
- ENDVERTEX $\chi^2/\mathrm{ndf}(\mathrm{B_s^0})$
- Log DTF $\chi^2/\mathrm{ndf}(\mathrm{B}^0_\mathrm{s})$
- Log IP $\chi^2/\mathrm{ndf}(\mathrm{B^0_s})$
- $P_T(B_s^0)$

ProbNNk resampled and compared to sWeighted data

Resample MC PID distributions (ProbNN) with PIDCalib:

- ProbNNk/mu (Κ, μ)
- Also correlate ProbNNk(K) to ProbNNpi/p(K) to later use for vetos
- Resample based on *P*, *P*_T and nTracks.

MC Corrections

GB Reweighting

Gradient Boosted Reweighting:

- Uses iterative chain of decision trees to equalise unbinned multi-dimensional distributions
- Reweight on $P_T(B_s^0)$, $\eta(B_s^0)$, GhostProb(K, μ), nLongTracks
- Binned reweighter struggles to match all inputs

Selection

Optimizing MVA cut

$$FOM = \frac{(\sum_{i} sw_{i})^{2}}{\sum_{i} (sw_{i}^{2})}$$

•
$$F_{max} = 89206$$

- F_{max} at BDTG3 = 0.78
- Sig 102822, Bkg 26419

5/11

Peaking backgrounds

 Λ_b^0 background

After veto we expect 1192.0 \pm 82.8 Λ_b^0 in $m(J/\psi K^+K^-) \in [5200, 5550]$ MeV

Procedure to subtract with negative weights:

- Reweight Λ^0_b MC phase space to match the resonant structure in $\Lambda^0_b\to J/\psi\, p{\rm K}$ pentaquark analysis
- Resample tagging information from data, missing in Λ_b^0 MC
- Normalize negative weights to $-1181 \Lambda_b^0$
- Merge with Data

Invariant Mass Model

Signal Model: Double-sided Crystal Ball function (CB2) with per-event mass error as a conditional observable, quadratic dependence in mass error: $\sigma = s_1 \sigma_i + s_2 \sigma_i^2$ Background Model: Exponential for combinatorial and Gaussian distribution for $B^0 \rightarrow J/\psi K^+K^-$ contribution

Procedure to statistically subtract background with negative weights:

- Fix tails of CB2 with Gradient Boosted reweighted MC
- Fit to $m(J/\psi K^+K^-)$ with a Primary Vertex constraint
- Fit in 6 m(KK) bins [990, 1008, 1016, 1020, 1024, 1032, 1050] MeV

Invariant Mass Model

New Model takes care of the $m(B_s^0)$ and helicity angle correlations Projections of the mass fit in 3 bins of $\cos(\theta_{\mu})$

- calculate normalisation weights
- perform the final fit to data to obtain parameter estimates
- reweigh the simulated sample, with event weights defined by $\epsilon = \textit{PDF}(\Omega)/\textit{PDF}_{gen}$
- reweigh simulated events such that the distributions of $p(K^+)$ and $p(K^-)$ match those in background subtracted data
- stop if $\Delta_p/\sigma_p < 0.01$ for all physics parameters, p, continue with step 1., otherwise

Table: Overall tagging performance.

Category	Faction(%)	$\varepsilon_{ m tag}(\%)$	\mathcal{D}^2	$arepsilon_{ ext{tag}}\mathcal{D}^2(\%)$
OS-only	14.31	10.19	0.086	0.87±0.03
SSK-only	59.60	42.41	0.031	$1.32{\pm}0.37$
OS&SSK	26.09	18.57	0.099	$1.85{\pm}0.14$
Total	100.00	71.17	0.057	4.04±0.39

