Imperial College London

$H \rightarrow \gamma \gamma at CMS$ Ed Scott

IOP APP and HEPP conference, 27th March 2018

Where are we?

CMS Integrated Luminosity, pp

- Confirmed it looks **qualitatively** similar to the SM expectation
- Now want to precisely characterise Higgs properties

Today focus on H→γγ results using 35.9fb⁻¹ data from 2016

Imperial College

London

Where are we?

CMS Integrated Luminosity, pp

- Confirmed it looks **qualitatively** similar to the SM expectation
- Now want to precisely characterise Higgs properties

Today focus on H→γγ results using 35.9fb⁻¹ data from 2016

Imperial College

London

Imperial College What have we measured?

- $\mu_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \quad \text{or} \quad \kappa_{j}^{2} = \Gamma^{j} / \Gamma_{\text{SM}}^{j}$
- Traditional per-process coupling modifiers μ_i , for i = ggH, VBF, ttH, etc.
- LO-motivated κ framework that modifies Higgs' couplings to SM particles
 - applies for both production and decay
 - additional effective coupling modifiers, κ_g and κ_γ , describe the loop processes for ggH production and $\gamma\gamma$ decay respectively
 - BSM contributions can cause deviations here at O(few%) level

Imperial College What have we measured?

- Higgs sector now precision physics
- CMS combination of Run 1 results
- Includes $\gamma\gamma$, ZZ, WW, $\tau\tau$ and bb channels

 World's most precise measurement: the ATLAS + CMS combination

Imperial College What have we measured?

- Higgs sector now precision physics
- CMS combination of Run 1 results
- Includes $\gamma\gamma$, ZZ, WW, $\tau\tau$ and bb channels

 World's most precise measurement: the ATLAS + CMS combination
See later slides!

Imperial College What will we measure?

• Simplified Template Cross-section (STXS) framework aims to minimise measurements' dependence on theory

Imperial College H->yy: Overview

- High resolution channel
- Key to discovery despite low BR (~0.2%)
- Now ideal for performing precision measurements of Higgs properties
- Select events with two well-isolated photons with $p_T > 30$ (20) GeV for (sub)leading, $|\eta| < 2.5$
- Additional scaled cut on (sub)lead photon $p_T > m_{\gamma\gamma}/3 \ (m_{\gamma\gamma}/4)$
- Fit small signal peak on large falling background in categories

- Identify photons using a BDT
- Discriminates between real and fakes using shower shape & isolation
- Another BDT for vertex selection
- Inputs are track recoil variables
- Negligible effect on resolution if within 1cm of true position
- Quality of diphotons quantified with third BDT
- Used to classify events by S/B

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

Imperial College $H \rightarrow \gamma \gamma$: Strategy

- Event Classification: tag events using additional objects present
 → target different production modes
- Improves S/B
- Enables measurement of per-process signal strengths
- Untagged events (mostly ggH) further separated by S/B
 → improves overall sensitivity

$$ttH$$
 leptonic
 \rightarrow ttH hadronic

 \checkmark VBF 0-2
 \checkmark VH hadronic

 \lor VBF 0-2
 \lor VH hadronic

Imperial College $H \rightarrow YY$: Distributions

- Simultaneously fit all categories
- These show result of fit for overall signal strength $\boldsymbol{\mu}$

- Per-process μ on LHS, including 3.3 σ significance for ttH (wrt μ =0)
- Stage 0 Simplified Template Cross-Section measurement on RHS

Imperial College $H \rightarrow \gamma \gamma$: Results

- Coupling to fermions vs vector bosons on LHS
- Effective coupling to gluons vs photons on RHS

Imperial College Higgs combination

• Combination of 2016 results to produce world-best precision measurements:

 $\mu = 1.17^{+0.10}_{-0.10} = 1.17^{+0.06}_{-0.06} \text{ (stat.) } ^{+0.06}_{-0.05} \text{ (sig. th.) } ^{+0.06}_{-0.06} \text{ (other sys.)}$

• Channels included are $\gamma\gamma$, ZZ, WW, $\tau\tau$, bb, and $\mu\mu$

- p_T and nJet bins, isolating BSM effects and separating VBF phase space
- in practice, may need to combine bins for reasonable sensitivity (+)

Imperial College STXS stage 1 - ggH

- p_T and nJet bins, isolating BSM effects and separating VBF phase space
- Focus on this phase space for illustration

Imperial College London

Purity matrix

Imperial College London

Summary

- Higgs physics has now pivoted from discovery to precision measurements
- Run 2 well under way: with just the 2016 dataset, CMS has surpassed the precision of the full Run 1 combined Higgs measurements
- The Higgs continues to stubbornly behave as SM-like as possible
 - but if there are deviations, we will find them
- Moving forward, measure Stage 1 processes in the STXS framework

BACKUP

Imperial College London

CMS detector

Imperial College London

CMS detector

H→γγ at CMS

Imperial College What do we measure?

- $\mu_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \quad \text{or} \quad \kappa_{j}^{2} = \Gamma^{j} / \Gamma_{\text{SM}}^{j}$
- Traditional per-process coupling modifiers μ_i , for i = ggH, VBF, ttH, etc.
- LO-motivated κ framework that modifies Higgs' couplings to SM particles

Measurement

Interpretation

Imperial College What do we measure?

- Simplified Template Cross-section (STXS) framework aims to minimise measurements' dependence on theory
- Useful in long-term, especially for re-interpretation
- Stage 0 bins closely mirror Run 1 process definitions
 - theory uncertainties on overall yield factored out of measurement
 - CMS results generally include these for the 2016 results

- Diphoton and dijet BDT combined to classify VBF events
- Inputs to dijet BDT include jet p_T and $\Delta \eta$, m_{jj} , additional angular variables $(\Delta \varphi_{jj,\gamma\gamma}, \Delta \varphi_{jj}, \min \Delta R(jet, photon)$, and centrality)
- VBF preselection: jet $p_T > 40 (30) \text{ GeV}$, $m_{jj} > 250 \text{ GeV}$

Imperial College $H \rightarrow \gamma \gamma$: VBF tags

- VBF tags defined using two-step BDT process, where the dijet BDT is combined with the diphoton BDT - cut on resulting distribution
- Validation using both $m_{\gamma\gamma}$ sidebands and Z—ee events with dijets

CMS_×

Imperial College H \rightarrow yy: Signal Model

- Signal parametric in m_H
- Built individually for each process and tag

Imperial College H->yy: Signal Model

Imperial College $H \rightarrow \gamma\gamma$: Uncertainties

• Systematic uncertainties almost equal to statistical with 2016 dataset, for the overall and ggH signal strengths

Imperial College Higgs combination

- Combination of 2016 results to produce world-best coupling measurements
- Channels included are: $\gamma\gamma$, ZZ, WW, $\tau\tau$, bb, $\mu\mu$ (and invisible, sometimes)

• p_T and nJet bins, isolating BSM effects and separating VBF phase space

Imperial College STXS stage 1 - VBF

- Correlated with nJets
- Interesting for future analyses: discrimination between VBF and ggH+2-jets

Imperial College London

STXS stage 1

Migration matrix

• This slide: "Migration" matrix, normalised by processes/columns