

Search for Higgs pair-production

decaying to pairs of *b* quarks and τ leptons

EMILY GRAHAM UNIVERSITY OF LIVERPOOL, ATLAS COLLABORATION **IOP JOINT HEPP AND APP ANNUAL CONFERENCE** 27TH MARCH, 2018

Overview

HIGGS PAIR-PRODUCTION

NON-RESONANT

• Two gg-fusion processes in the Standard Model (SM)

- Diagram 1 provides a probe of the Higgs trilinear self-coupling λ_{hhh}
 - Destructive interference between two diagrams → small crosssection

• $\sigma_{hh}{\sim}33.49~{\rm fb}~@~\sqrt{s}=13~{\rm TeV}$

• Possible BSM enhancements include composite Higgs models

RESONANT

- Randall-Sundrum graviton (RSG), G
 - Spin-2 Kaluza-Klein excitations in the bulk RS model

•
$$c = \frac{k}{\overline{M}_{\text{Pl}}} = 1, 2$$

- Two Higgs Doublet Model (2HDM) Higgs, H
 - Heavy CP-even (spin 0) neutral Higgs, H
- 260 1000 GeV

HIGGS PAIR-PRODUCTION

	bb	ww	ττ	ZZ	γγ
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%

DECAY CHANNELS

- $hh \rightarrow b\bar{b}\tau^+\tau^-$ decay channel
 - Third-largest observable branching ratio, BR \sim 7.4%
 - Relatively low QCD background compared to bbbb
- Two τ decay channels are considered:
 - $\tau_{lep} \tau_{had}$ (lep = e, μ): BR = 45.8%
 - $\tau_{had} \tau_{had}$: BR = 41.9%
- This talk will focus on $au_{lep} au_{had}$. $au_{had} au_{had}$ follows same general strategy.

ANALYSIS STRATEGY

EVENT PRESELECTION

- Lowest un-prescaled single lepton triggers with $p_T^{\text{lep}} > 25 27$ GeV (period dependent)
 - Exactly $1 e/\mu$ and 1 "medium" hadronic τ of opposite sign and ≥ 2 central jets

• $p_T^{\tau} > 20 \text{ GeV}, p_T^{\text{jet}} > 45, 20 \text{ GeV}$

STRATEGY

- 2015+2016 data
- BDT used to discriminate between signal and background (giving up to a 50% improvement in sensitivity)
- 2 *b*-tag SR used for training and analysing BDT
- 1 *b*-tag, high- m_T and SS 2 *b*-tag CRs used to validate modelling
- Blinding: SR BDT score is blinded from the right-hand-side (higher score region) towards the left until 90% of signal is covered

BACKGROUNDS

* These backgrounds are normalised to data in fit

Fake Backgrounds

- Any background where a jet is misidentified as a hadronic τ
- This is poorly modelled by Monte Carlo \rightarrow use data-driven method for estimation
- Calculate a 'fake factor' separately for each fake-dominated process for 1- and 3-prong τ s, parameterised in terms of $p_T(\tau_h)$

Fake Factor Method

- Define control regions for each process:
 - $t\bar{t}: m_T^{l\nu} > 40$ GeV, 2 *b*-tag
 - W+jets: $m_T^{l\nu} > 40 \text{ GeV}$, 0 b-tag
 - QCD multi-jet: inverse lepton isolation, 1 b-tag

Number of anti- τ events (those which fail τ ID but pass looser selection) with the real τ contribution (MC) subtracted

$$N_{\rm Bkg}^{\rm Est.} = \left(N_{\rm data,SR}^{\rm anti- au} - N_{\rm true,SR}^{\rm anti- au}\right) \times \left[FF_{\rm comb}\right]$$

	SR cuts (eg isol lep)	CR cuts (eg !isol)
ID $ au$	SR	CR (ID $ au$)
!ID $ au$	Template	CR (!ID $ au$)

Fake Backgrounds

• Combined FF is derived by:

$$FF(\text{comb}) = FF(\text{QCD}) \times r_{\text{QCD}} + FF(W/t\bar{t}) \times (1 - r_{\text{QCD}})$$

• r_{QCD} (also a function of p_T^{τ}) is defined as the fraction of fakes from multi-jets in the anti- τ region $r_{\text{QCD}} = \frac{N(\text{multijet, data})}{N(\text{data}) - N(\text{true }\tau_{\text{had}}, \text{ MC})}$

Z+HF and True $t\bar{t}$ Normalisation

- *Z*+HF production cross-section not well described by MC:
 - Normalise these processes to data in a CR
 - Use $Z \rightarrow \mu\mu$ + HF data events
 - Include in final fit in order to get normalisation SF
 - *m*_{ll} distribution re-binned to one bin to fit only normalisation (not shape)
 - Z+HF SF ~ 1.4
 - Modelling uncertainties
 - ME variation
 - Vary factorisation/renormalisation

- True $t\bar{t}$ normalisation allowed to float in fit and constrained by low BDT:
 - $t\bar{t}$ SF ~1
 - Modelling uncertainties from varying matrix element, parton shower and ISR/FSR

BOOSTED DECISION TREE

STRATEGY

- BDT used to separate signal from background
- Trained on MC after preselection cuts and 2 *b*-tag requirement
- Signal trained against $t\bar{t}$ background only (true and fake τ components from MC)
- Resonant analysis:
 - Separate training for each mass point and signal model
 - Combine signal sample for each mass with signal masses either side (e.g. for 300 GeV use 275, 300, 325 GeV)
- Used as final discriminant for fit and limit setting

BDT TRAINING

- MC is split by odd/even event numbers
- This allows for training on one half of MC and testing on other
 - Then apply 'odd' training to 'even' data sample and vice versa
 - Plots show training and test samples for signal and background

BOOSTED DECISION TREE

- BDT input variables shown to be well modelled
- Non-resonant variable list is a subset of resonant list
- The least discriminating of any pairs of variables with high correlation coefficient was removed from list

Variable	Lep-had (res)	Lep-had (non-res)
m_{HH}	\checkmark	\checkmark
m _{MMC}	\checkmark	\checkmark
m_{bb}	\checkmark	\checkmark
$\Delta R(\tau,\tau)$	\checkmark	\checkmark
$\Delta R(b,b)$	\checkmark	\checkmark
E_T^{miss}	\checkmark	
$E_T^{miss} \phi$ cent	\checkmark	
$m_T^{l u}$	\checkmark	\checkmark
$\Delta \phi(H,H)$	\checkmark	
$\Delta p_T(l,\tau)$	\checkmark	
p_T^{B2}	\checkmark	

Input variables used in the BDT. The red line shows the RSG signal with $m_{G}=300~{
m GeV}$ (scaled by 100).

BOOSTED DECISION TREE RESONANT BDT SCORES

- BDT scores used as final discriminant for limit setting
- Data here is blinded
- RSG signal scaled by 100

EXPECTED SENSITIVITY

RESONANT EXPECTED LIMITS

- Limits on $\sigma_H \times BR_{H \to hh \to bb\tau\tau}$ where *H* denotes a heavy scalar in the 2HDM
- Plots show the **combined** limits for the two τ decay channels, $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$
- As well as the preselection + 2 *b*-tag signal region, a control region of $Z \rightarrow \mu\mu$ data events is included as a single bin in the fit in order to derive a normalisation factor for Z + HF background processes

EXPECTED SENSITIVITY RESONANT EXPECTED LIMITS

- For the RSG, this is shown alongside the theory predictions for $\sigma \times BR$
- Plots show the **combined** limits for the two τ decay channels, $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$

EXPECTED SENSITIVITY

NON-RESONANT EXPECTED LIMITS

- Non-resonant BDT score is shown blinded for $au_{
 m lep} au_{
 m had}$ only
- Expected limit for non-resonant di-Higgs production decaying to a $bb\tau\tau$ final state is $13.3 \times \sigma_{\rm SM}$
- This is shown in the table alongside other ATLAS and CMS results

	Obs. (exp.) 95% CL limit on $\sigma/\sigma_{_{ m SM}}$		
Channel		CMS	
bbbb	29 (38) Atlas-conf-2016-049	342 (308) arXiv:1606.04782	
bbWW	-	410 (227) CMS-PAS-HIG-16-024	
bbtt	(13.3)	28 (25) CMS-PAS-HIG-17-002	
bbττ bbγγ	(13.3) 117 (161) ATLAS-CONF-2016-004	28 (25) CMS-PAS-HIG-17-002 19.2 (16.5) CMS-PAS-HIG-17-008	
bbττ bbγγ WWγγ	(13.3) 117 (161) ATLAS-CONF-2016-004 747 (286) ATLAS-CONF-2016-071	28 (25) CMS-PAS-HIG-17-002 19.2 (16.5) CMS-PAS-HIG-17-008 –	

SUMMARY

- Observation of non-resonant di-Higgs production will allow measurement of the Higgs self-coupling – a test of the Standard Model
- Resonant di-Higgs production may occur as a result of heavy BSM particles
- Boosted decision tree has increased sensitivity by up to 50% compared to a cutbased analysis
- bbττ expected sensitivity for non-resonant is competitive with other decay channels

BACK-UP

TRIGGER AND EVENT SELECTION

LEP-HAD: SINGLE LEPTON TRIGGER

• Single electron triggers

- Several different single electron triggers are used to maximise acceptance
- ≥ 1 electron with $p_T > 24$ GeV satisfying the 'medium' identification criteria and 'loose' isolation requirements (in later data-taking periods the *p*T threshold is raised to 26 GeV and identification changed to 'tight')
- **or** \geq 1 electron with $p_T > 60$ GeV that applies the identification criteria but no requirement on the isolation,
- or ≥ 1 electron with $p_T > 120 140$ satisfying the 'loose' identification criteria
- Single muon triggers
 - 1 muon with $p_T > 24 26$ GeV (depending on data-taking period) satisfying a 'loose' isolation criteria
 - **or** \geq 1 muon with with $p_T > 50$ GeV without other requirements
- Any event that fails the single lepton triggers is tested to see if it passes a lepton-plus-tau trigger (LTT).

TRIGGER AND EVENT SELECTION

LEP-HAD SELECTION

- $l\tau_{had}bb + E_T^{miss}$ final state \rightarrow BDT
- Single lepton trigger
 - Exactly one electron passing the 'tight' criteria or exactly one muon passing 'medium' criteria (that includes the requirement that the muon must have $\eta < 2.5$), with p_T 1 GeV above the corresponding trigger threshold for the data-taking period.
 - Exactly one hadronic tau with $p_T > 20~{\rm GeV}$ and $\eta < 2.3$
 - At least 2 jets with $p_T > 45,20$ GeV
- No other electrons and muons in the event
- Opposite sign between the tau and the light lepton

EVENT RECONSTRUCTION

HADRONIC TAUS

- Jets formed using the anti- k_T algorithm with a radius parameter R = 0.4
- Input to the visible hadronic tau decay reconstruction algorithm provides little rejection of the jet background
- Input the hadronic tau candidates to a BDT
- Trained separately for 1- and 3-track hadronic tau candidates
- Require to pass the "medium" working point, which is a p_T -dependent definition starting at 0.6 of the BDT

ANTI-TAUS

- Anti-tau ID criteria is used in calculating fake factors
- Anti-taus are tau candidates that pass a cut on the tau-ID BDT of 0.35 but fail the "medium" requirement

EVENT RECONSTRUCTION

B-TAGGING

- *b*-jets are identified using the MV2 multivariate discriminant
- This combines variables from the basic b-tagging algorithms
- Use the 70% working point (this has an average tagging efficiency of 70% for *b*-jets in ttbar events)
- For small backgrounds not typically produced in association with b-jets, use 'truth-tagging' to keep full stats: give each event a random MV2 value and weight by the efficiency of each jet to pass the b-jet selection.

BDT OVERTRAINING PLOTS

(a) 2HDM ($m_H = 300 \text{ GeV}$)

(b) 2HDM ($m_H = 700 \text{ GeV}$)

(e) Non-resonant

BDT INPUT VARIABLES

BDT INPUT VARIABLES

BDT CONFIGURATION

- NTrees = 200
- MaxDepth = 4
- MinNodeSize = 5%
- nCuts = 100
- AdaBoostBeta = 0.15
- NegWeightTreatment="InverseBoostNegWeights" (default)

27 March, 2018

BDT BINNING

- Rebin BDT score distributions to balance between the high-stat, low BDT score region and keeping shape information for signal in high BDT score region
- Keep uncertainty on the background less than a certain value (x) multiplied by the fraction of the signal
- Chose value of x by eye by looking at the expected number of events at high-BDT-score and trying to keep it above 10
- Require 10 events in last bin

BDT DISTRIBUTIONS IN CRS

Events

Data/Pred.

BDT SENSITIVITY

Limits for lephad

BDT SENSITIVITY

Limits for lephad

Limits for lephad

Signal injections: 1 mass point training (left) and 3 (right)

- VBF production mode analysis underway
- Could add leplep final state
- 2-stage BDT selection: add separate BDT training for Z+bb background
- Try different multivariate methods: want this to be mass-independent to improve on current method
- Varied-lambda analysis: Current analysis is not really sensitive to the triangle diagram (i.e. lambda_hhh). Have samples with various values of lambda between -20 and 20. Will be able to produce limits on lambda