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Overview

I Jet tagging and substructure
I Improving ATLAS jet tagging
I Run 2 performance
I Newer techniques
I Results

2 / 24



Hadronic jet tagging
Boosted, hadronically decaying massive particles can be reconstructed in a
large radius jet

SM measurements and BSM searches study final states with W and top jets.
Probe the substructure of each of each jet to identify it

The challenges
I Huge QCD multi-jet backround
I Pileup: stochastic noise smears signal
I Finite calorimeter angular resolution
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Jet substructure variables
Variables designed to be sensitive to discriminating properties of jets

example: N-subjetiness
I A set of N subjet axis are defined using the exclusive kt algorithm.
I Sum over constituents of each jet
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D2 variable is a subjet independent method of probing same structure
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Jet substructure variables

Many many other variables exist (this is a small subset) and were studied in
the following analyses

Technique Variable Used for

Jet Mass Calorimeter Mass W, Top
Track Assisted Mass W, Top

Energy Correlation functions ECF1−3 + newer W, Top
D2,C2,M2,N2 W, Top

N-subjettiness τ1, τ2, τ3 W, Top
τ21, τ32 W, Top

Splitting measures
Zcut, QW W
µ12 W√

d12,
√

d23 W, Top
Shower histories Shower Deconstruction W, Top
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Improving run 2 performance
I Better mass reconstruction
I 2 variable tagger optimisation
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Better mass reconstruction

Track-assisted mass: mTA = mtrack
pcalo

T
ptrack

T

I consider tracks associated to jet, scale to calorimeter pT

I lack of neutral reconstruction mitigated by better angular resolution
Combined mass: Use tracking information to improve jet mass resolution

I Use linear combination of the two: mcomb = wcalomcalo + wTAmTA

I weights based on resolution in jet phase space wcalo =
σ−2

calo
σ−2

calo+σ
−2
TA

JETM-2017-002

I better mass resolution across
the jet pT spectrum than either
definition

I Allows for tighter cuts on mass,
leads to better tagging
performance
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2017-002/


2 variable optimisation

Optimise two variable cuts in parallel
I Find each set of cuts that

satisfies the required working
point

I Select the set of cuts that
maximises background rejection

I Do for narrow pT bins

I Results in a set of pT dependant
cuts

I Fit to form a smooth set of cuts
which define the tagger
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Performance

Compare the performance relative to run 1 techniques

Look at background rejection at a fixed signal efficiency
I Better mass resolution allows for a tighter cut on the jet mass, increases

background rejection
I New optimisation procedure also independently improves performance

by optimising cuts in the variables in parallel
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Studying newer techniques
I Shower deconstruction
I MVA techniques: Boosted decision tree (BDT) and

deep neural network (DNN)
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Newer techniques: Shower deconstruction
Calculate an observable for each jet in order to discriminate between signal
and background jets

χ({p}N) =
P({p}N |S)

P({p}N |B)

for a set of N subjet momenta for an input jet, {p}N

Use a simplified showering algorithm to calculate P({p}N |S),P({p}N |B)

I Simulate hard scatter and ISR only
I Only consider partons which fall within the large R jet
I Approximate decay and splitting probabilities
I Repeat using signal and background model for each jet

Finding physics signals with shower deconstruction
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https://arxiv.org/abs/1102.3480


Sum over all possible shower histories in order to determine
P({p}N |S),P({p}N |B)

ATLAS-CONF-2014-003

Some jets are instantly rejected if they are deemed incompatible with the
signal hypothesis 12 / 24

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-003/


Newer techniques: multi-variate techniques

Assess the performance of boosted decision tree (BDT) and deep neural
network (DNN) algorithms

In each case the set of input variables and the hyperparameters of each
technique were studied and optimised

I Large training and testing samples were obtained
I A large number of variables were tested, not including the jet mass
I The correlations between the variables were also studied
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BDT tagger

I Sequentially add best performing
variables

I Scan over the various
hyperparameters for optimum

I Can cut on output score to
obtain 50% working point

ATL-PHYS-PUB-2017-004
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/


DNN tagger
I Run training on groups of

variables based on correlations
(difficulty due to large training
times)

I Overtraining is tested by
studying the loss with a
validation set

I Can cut on output score to
obtain 50% working point

ATL-PHYS-PUB-2017-004
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/


Results

ATLAS-CONF-2017-064

Direct comparison of the above techniques
I Practically no difference in DNN and BDT performance
I Shower deconstruction is the best single variable top tagger studied

(but not for Ws)
I Newer techniques outperform traditional substructure cut based taggers
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-064/


Summary

There has been a significant improvement in tagging performance using new
reconstruction and MVA techniques

I Above MC results have been studied in data ATLAS-CONF-2017-064

I MVA techniques exploit correlations between variables for better
performance, up to a point

I Important also to consider better reconstruction techniques which can
have a significant effect on performance

Better performance directly impacts physics results! (W ′ → tb search)

CERN-EP-2017-340
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-064/
https://arxiv.org/pdf/1801.07893.pdf


Backup
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Study the JSS and MVA variables in data
Use a selection of qcd jets from γ+jets events and W and top jets from t t̄
events

ATLAS-CONF-2017-064
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-064/


Study the JSS and MVA variables in data
Can study the tagger performance in the data sample

ATLAS-CONF-2017-064
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-064/


Study the JSS and MVA variables in data
And also look the MVA tagger output score

ATLAS-CONF-2017-064
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-064/


Jet substructure variables
(generalised) N-subjetiness

τ
(β)
N =

1
d0

∑
i

pTi min
{

(∆R1,i )
β , (∆R2,i )

β ...(∆RN,i )
β
}

A set of N subjet axis are defined using the exclusive kt algorithm.
Energy correlation functions (and ratios)
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Hype rparameters
Optimised BDT hyperparameters

ATL-PHYS-PUB-2017-004

Optimised DNN hyperparameters

ATL-PHYS-PUB-2017-004
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/


DNN input group performance

ATL-PHYS-PUB-2017-004
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/

