

Tagging boosted jets from top quarks and *W* bosons using jet substructure and multivariate techniques

IOP joint HEPP and APP conference

March 2018

Amal Vaidya

Overview

UCL

- Jet tagging and substructure
- Improving ATLAS jet tagging
- Run 2 performance
- Newer techniques
- Results

Hadronic jet tagging

Boosted, hadronically decaying massive particles can be reconstructed in a large radius jet

SM measurements and BSM searches study final states with W and top jets. Probe the **substructure** of each of each jet to identify it

The challenges

- Huge QCD multi-jet backround
- Pileup: stochastic noise smears signal
- Finite calorimeter angular resolution

ش ا

UCL

Variables designed to be sensitive to discriminating properties of jets

example: N-subjetiness

- ► A set of *N* subjet axis are defined using the exclusive k_t algorithm.
- Sum over constituents of each jet

$$\tau_{N}^{(\beta)} = \frac{1}{d_0} \sum_{i} p_{\mathrm{T}i} \min\left\{ \left(\Delta R_{1,i} \right)^{\beta}, \left(\Delta R_{2,i} \right)^{\beta} ... \left(\Delta R_{N,i} \right)^{\beta} \right\}$$

D₂ variable is a subjet independent method of probing same structure

Many many other variables exist (this is a small subset) and were studied in the following analyses

Technique	Variable	Used for
lot Mass	Calorimeter Mass	W, Top
Jet Mass	Track Assisted Mass	W, Top
Energy Correlation functions	ECF_{1-3} + newer	W, Top
Energy Contenation functions	D_2, C_2, M_2, N_2	W, Top
N subjettinges	$ au_1, au_2, au_3$	W, Top
IN-Subjettiness	$ au_{21}, au_{32}$	W, Top
	$Z_{\rm cut}, Q_W$	W
Splitting measures	μ_{12}	W
	$\sqrt{d_{12}}, \sqrt{d_{23}}$	W, Top
Shower histories	Shower Deconstruction	W, Top

Improving run 2 performance

- Better mass reconstruction
- 2 variable tagger optimisation

Track-assisted mass: $m_{TA} = m_{track} \frac{p_T^{calo}}{p_T^{track}}$

- consider tracks associated to jet, scale to calorimeter p_T
- lack of neutral reconstruction mitigated by better angular resolution

Combined mass: Use tracking information to improve jet mass resolution

- ► Use linear combination of the two: m_{comb} = w_{calo}m_{calo} + w_{TA}m_{TA}
- ▶ weights based on resolution in jet phase space $W_{calo} = \frac{\sigma_{calo}}{\sigma_{calo}^{-2} + \sigma_{TA}^{-2}}$

- better mass resolution across the jet p_T spectrum than either definition
- Allows for tighter cuts on mass, leads to better tagging performance

2 variable optimisation

Optimise two variable cuts in parallel

- Find each set of cuts that satisfies the required working point
- Select the set of cuts that maximises background rejection
- Do for narrow p_T bins

- Results in a set of p_T dependant cuts
- Fit to form a smooth set of cuts which define the tagger

Performance

Compare the performance relative to run 1 techniques

Look at background rejection at a fixed signal efficiency

- Better mass resolution allows for a tighter cut on the jet mass, increases background rejection
- New optimisation procedure also independently improves performance by optimising cuts in the variables in parallel

Studying newer techniques

- Shower deconstruction
- MVA techniques: Boosted decision tree (BDT) and deep neural network (DNN)

Newer techniques: Shower deconstruction

UCL

Calculate an observable for each jet in order to discriminate between signal and background jets

$$\chi(\{p\}_N) = \frac{P(\{p\}_N | S)}{P(\{p\}_N | B)}$$

for a set of N subjet momenta for an input jet, $\{p\}_N$

Use a simplified showering algorithm to calculate $P(\{p\}_N|S), P(\{p\}_N|B)$

- Simulate hard scatter and ISR only
- Only consider partons which fall within the large R jet
- Approximate decay and splitting probabilities
- Repeat using signal and background model for each jet

Finding physics signals with shower deconstruction

Sum over all possible shower histories in order to determine $P(\{p\}_N|S), P(\{p\}_N|B)$

Some jets are instantly rejected if they are deemed incompatible with the signal hypothesis

Newer techniques: multi-variate techniques

Assess the performance of boosted decision tree (BDT) and deep neural network (DNN) algorithms

In each case the set of **input variables** and the **hyperparameters** of each technique were studied and optimised

- Large training and testing samples were obtained
- A large number of variables were tested, not including the jet mass
- The correlations between the variables were also studied

BDT tagger

- Sequentially add best performing variables
- Scan over the various hyperparameters for optimum
- Can cut on output score to obtain 50% working point

ATL-PHYS-PUB-2017-004

NTrees

DNN tagger

	Top Tagging Observable Groups						
Observable	1	2	3	4	5	6	7 (BDT)
ECF_1				0		0	0
ECF_2				0		0	
ECF_3				0		0	0
C_2					0	0	0
D_2					0	0	0
τ_1		0	0	0	0	0	
τ_2		0	0	0	0	0	0
τ_3		0	0	0	0	0	
τ_{21}	0		0		0	0	0
τ_{32}	0		0		0	0	0
$\sqrt{d_{12}}$	0	0	0	0	0	0	0
$\sqrt{d_{23}}$	0	0	0	0	0	0	0
Q_w	0	0	0	0	0	0	0

- Run training on groups of variables based on correlations (difficulty due to large training times)
- Overtraining is tested by studying the loss with a validation set
- Can cut on output score to obtain 50% working point

• ATL-PHYS-PUB-2017-004

Results

Direct comparison of the above techniques

- Practically no difference in DNN and BDT performance
- Shower deconstruction is the best single variable top tagger studied (but not for Ws)
- Newer techniques outperform traditional substructure cut based taggers

Summary

UCL

There has been a significant improvement in tagging performance using new reconstruction and MVA techniques

- Above MC results have been studied in data ATLAS-CONF-2017-064
- MVA techniques exploit correlations between variables for better performance, up to a point
- Important also to consider better reconstruction techniques which can have a significant effect on performance

Better performance directly impacts physics results! ($W' \rightarrow tb$ search)

Backup

Study the JSS and MVA variables in data

Use a selection of qcd jets from γ +jets events and W and top jets from $t\bar{t}$ events

Study the JSS and MVA variables in data

UCL

Can study the tagger performance in the data sample

Study the JSS and MVA variables in data

And also look the MVA tagger output score

(generalised) N-subjetiness

$$\tau_{N}^{(\beta)} = \frac{1}{d_0} \sum_{i} p_{\mathrm{T}i} \min\left\{ (\Delta R_{1,i})^{\beta}, (\Delta R_{2,i})^{\beta} ... (\Delta R_{N,i})^{\beta} \right\}$$

A set of N subjet axis are defined using the exclusive k_t algorithm. Energy correlation functions (and ratios)

$$\boldsymbol{e}_{2}^{\beta} = \frac{1}{\boldsymbol{p}_{\mathsf{T}}^{2}} \sum_{J} \sum_{i < j \in J} \boldsymbol{p}_{\mathsf{T}i} \boldsymbol{p}_{\mathsf{T}j} \boldsymbol{R}_{ij}^{\beta} \quad \boldsymbol{e}_{3}^{\beta} = \frac{1}{\boldsymbol{p}_{\mathsf{T}}^{3}} \sum_{J} \sum_{i < j < k \in J} \boldsymbol{p}_{\mathsf{T}i} \boldsymbol{p}_{\mathsf{T}j} \boldsymbol{p}_{\mathsf{T}k} \boldsymbol{R}_{ij}^{\beta} \boldsymbol{R}_{jk}^{\beta} \boldsymbol{R}_{ik}^{\beta}$$

Ratio of energy correlation functions: $D_2^{\beta} = \frac{e_3^{\beta}}{(e_2^{\beta})^3}, C_2^{\beta} = \frac{e_3^{\beta}}{(e_2^{\beta})^2}$

Optimised BDT hyperparameters

Setting Name	Value Tested
NTrees	[10, 50, 100, 200, 500, 850, 2000]
MaxDepth	[1, 2, 3, 5, 7, 10, 20, 50, 100]
MiniNodeSize	[0.5, 1.0, 2.5, 5.0, 10, 20]
nCuts	[5, 10, 20, 50, 100, 500]
Bagged Fraction	[0.1, 0.3, 0.5, 0.7, 0.9]
Shrinkage	[0.05, 0.1, 0.3, 0.5, 0.7, 0.9]

• ATL-PHYS-PUB-2017-004

Optimised DNN hyperparameters

	W-Boson Tagging Chosen	Top-Quark Tagging Chosen	Reference
Layer type	Dense	Dense	[24]
Number of hidden layers	5	5	[24]
Activation function	rectified linear unit (relu)	rectified linear unit (relu)	[41]
Learning rate	10 ⁻⁵	5×10^{-5}	[43]
L1 Regularizer	10 ⁻²	10 ⁻³	[41]
NN weight initialization	Glorot uniform	Glorot uniform	[44]
Batch size	200	200	[41]
Batch normalization	Yes	Yes	[45]
Training groups	Group 5	Group 6	-
Architecture	18, 25, 22, 19, 14, 7, 1	13, 18, 16, 14, 10, 5, 1	-

▶ ATL-PHYS-PUB-2017-004

DNN input group performance

► ATL-PHYS-PUB-2017-004