Higgsinos

& sleptons: opening the soft lepton frontier at the LHC

IOP APP & HEPP Conference University of Bristol

26-28 Mar 2018

Jesse Liu University of Oxford

Where is the new physics hiding?

What opportunities remain under the search lamppost?

Case study: hunting Higgsinos Why are MSSM compressed scenarios so challenging?

Surpassing two-decade old LEP limits

How do we detect Higgsino dark matter at hadron colliders?

Naturalness motivates light gluinos, stops, Higgsinos

Adapted from Papucci et al [arXiv:1110.6926] Light gluino searches: spectacular jets + MET signatures — see Mike's talk

Stop sensitivity approaching 1 TeV

Electroweak naturalness motivates stop \tilde{t} near weak scale **Dedicated efforts in Run 2 searches closing gaps left after Run 1** From ATLAS SUSY summary plots

How to read typical SUSY simplified model exclusion plots

How to read typical SUSY simplified model exclusion plots

THE SEARCHLIGHT IS SHIFTING from spectacular to subtle discoveries

Opportunities & challenges for **soft, rare, quirky signals**

Soft stuff Particle identification Trigaer thresholds

Rare SUSY

Colourless sparticles Dark sector

Quirky creatures

Displaced difficulties Long-lived exotica

> Case study *Higgsino*

HUNTING HIGGSINOS

A benchmark for probing the soft, rare & long-lived frontiers

Higgsinos H̃ are the spin-1/2 fermionic partner of the Higgs bosons Mass should be near weak scale by naturalness arguments

Higgsinos realised as multiplet of neutralinos & charginos

Challenge to reconstruct intra-Higgsino soft decay products

Striking gaps in ATLAS sensitivity

 $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ (wino) $\rightarrow W^{(*)} Z^{(*)} \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \text{leptons} + E_T^{\text{miss}}$

'Smoking-gun' lamppost of high p_T objects is focus of first LHC searches. Confront the **soft lepton frontier** to open sensitivity to diagonal.

New strategy employed by ATLAS [1712.08119]

Signals localised at low $m_{\ell\ell}$: bump-hunt SUSY style!

Sensitivity driven by $\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0$ (same-flavour opposite-sign) Signal kinematic endpoint: $m_{\ell\ell} < \Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ gives dramatic background discrimination (Foreshadowing: sleptons where leptons come from different legs have endpoint in m_{T2} variable)

Confronting experimental limitations of soft lepton reconstruction crucial for sensitivity Fun fact: a muon loses 3 GeV of energy before reaching the ATLAS muon spectrometer

Must confront 'fake/nonprompt' leptons at soft frontier

Soft lepton regime dominated by challenging fake/nonprompt lepton* backgrounds Includes misidentified jets, photon conversions, semi-leptonic decays of *B*-hadrons, pileup Predicted using data-driven 'Fake Factor' method (details in backup)

Make bins orthogonal, split by $ee/\mu\mu$ to statistically combine, improving exclusion.

Showing fit with $\mu_{signal} = 0$.

A hadron collider extends nearly 20 year old LEP limits

From promptly decaying to long-lived Higgsinos

Closing the ATLAS wino-bino via WZ gap

Mass frontier: up to $m(\tilde{\ell}) \sim 190$ GeV [1712.08119]

How do we close the Higgsino prompt-long-lived gap?

December 2017

Need new techniques to overcome limiting factors in sensitivity

Physics opportunities

Soft $2\ell + E_T^{\text{miss}} + \text{ISR}$ strategy: opened window on sought-after SUSY states. Search for Higgsino & slepton production with 2ℓ .

Challenges at the soft lepton frontier

Recent support for $p_T(e/\mu) > 4.5/4$ GeV critical for small ΔM sensitivity. Fake/non-prompt leptons dominate background — used data-driven estimate.

Sensitivity beyond LEP

Signal regions binned in $m_{\ell\ell}$ or m_{T2} for decisive sensitivity. Sensitivity down to Δm of 3 GeV for Higgsinos, 1 GeV for sleptons.

New strategy presented by ATLAS [1712.08119]

EXTRAS

LHC can probe composition of electroweakinos i.e. underlying SUSY parameters $m_{\ell\ell}$ shape differs for Higgsino \tilde{H} vs wino-bino \tilde{W}/\tilde{B} scenarios. Using MadSpin to model $\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0$ decays to match predicted shape.

Background estimation strategy: schematic overview

Prediction Mix of data & MC methods	Signal region Same flavour leptons	Validation Check background modelling		
Fake Factor Data-driven method	≥ 1 lepton fake/non-prompt > 50% at low lepton pT	VR-SS MET/HT(lep) > 5.	VP-DF	
CR-top N(b-jets)≥1 ttbar, tW MC normalisation	E.g. W+jets Top quark 2L ttbar & tW missed b-jet	Same sign leptons. Fakes purity > 90%.	Different flavour leptons. Exactly the same kinematic regimes as SRs. Global check of background	
CR-tau 60 < m(حت) < 120 GeV MC normalisation	$Z \rightarrow \tau \tau$ 2L decays Diboson WW 21	VR-VV		
Monte Carlo only	WZ missed 3rd lepton Others	MET/HT(lep) < 3. Diboson purity ~40%.	modelling.	
Monte Carlo only	E.g. $Z \rightarrow ee/\mu\mu$, Higgs			

Irreducible: 2 real & prompt leptons and MET from neutrinos

Reducible: ≥ 1 or more fake/non-prompt lepton(s), instrumental MET (negligible)

List of MC samples in backup p??, more details of strategy in backup p??.

Control regions for irreducible backgrounds

Background-only fit to CR-top & CR-tau (each single-bins).

This derives normalisation factors μ_{top} , $\mu_{Z \to \tau \tau}$ respectively.

Highlight ATLAS $2\ell + E_T^{\text{miss}}$ + ISR search

	Variable	Common requirement		
	Number of leptons	= 2		
Soloct 2 coft SEOS lontons	Lepton charge and flavour	e^+e^- or $\mu^+\mu^-$		
Select 2 soft SFOS leptons	Leading lepton $p_{\rm T}^{\ell_1}$	> 5 (5) GeV for electron (muon)		
	Subleading lepton $p_{\rm T}^{\ell_2}$	> 4.5 (4) GeV for electron (muon)		
Conversions/fake muons	$\Delta R_{\ell\ell}$	> 0.05		
Drell-Yan resonances	$m_{\ell\ell}$	∈ [1, 60] GeV excluding [3.0, 3.2] GeV		
	$\begin{bmatrix} E_{\rm T}^{\rm miss} \end{bmatrix}$	> 200 GeV		
Select ISR topology	Leading jet $p_{\rm T}^{j_1}$	> 100 GeV		
	$\Delta \phi(j_1, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	> 2.0		
Mis-measured jets	$\min(\Delta\phi(\text{any jet}, \mathbf{p}_{T}^{\text{miss}}))$	> 0.4		
Top quarks	Number of <i>b</i> -jets	= 0		
$Z \rightarrow \tau \tau$	$m_{\tau\tau}$	< 0 or > 160 GeV		

Same-flavour opposite sign (SFOS) signature

Higgsino sensitivity dominated by $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0(Z^* \rightarrow \ell^+ \ell^-)$.

Select ISR topology

 $E_{\rm T}^{\rm miss} > 200 \text{ GeV}, p_{\rm T}^{j_1} > 100 \text{ GeV}, \Delta \phi(j_1, {\bf p}_{\rm T}^{\rm miss}) > 2.0.$

Suppress backgrounds

Other common requirements reduce various backgrounds labelled above.

Schematic of data-driven Fake Factor method

Numerator (denominator) intuition: given fake leptons, fraction that pass (fail) signal requirements.

ID Electrons: Tight identification, GradientLoose isolation. ID Muons: Medium identification, FixedCutTightTrackOnly isolation.

ID leptons: same as signal leptons | Anti-ID leptons: invert \geq 1 ID requirements.

Bin in p_T for $e \& \mu$, bin in N_{b-iet} only for μ fake factors.

Fake Factor developed in H to WW analysis. Studied fake composition in MC (mostly heavy flavour), optimised object definitions. Opening the soft lepton frontier for new physics at the LHC | Jesse Liu | 26–28 Mar 2018

Summary of background estimation validation

Breakdown of systematics in SRs

Electroweakino and slepton SRs

	Variable	Common requirement			
	Number of leptons	= 2			
	Lepton charge and flavour	$e^+e^- \text{ or } \mu^+\mu^-$			
	Leading lepton $p_T^{\ell_1}$	> 5 (5) GeV for electron (muon)			
	Subleading lepton $p_T^{\ell_2}$	> 4.5 (4) GeV for electron (muon)			
	$\Delta R_{\ell\ell}$	> 0.05			
	$m_{\ell\ell}$	∈ [1, 60] GeV excluding [3.0, 3.2] GeV			
	$E_{\rm T}^{\rm miss}$	> 200 GeV			
	Leading jet $p_T^{j_1}$	> 100 GeV			
	$\Delta \phi(j_1, \mathbf{p}_T^{\text{miss}})$	> 2.0			
	$min(\Delta \phi(any jet, \mathbf{p}_T^{miss}))$	> 0.4			
	Number of b-jets	= 0			
	m _{TT}	< 0 or > 160 GeV			
		Electroweakino SRs	Slepton SRs		
	$\Delta R_{\ell\ell}$	< 2	_		
	$m_T^{\ell_1}$	< 70 GeV			
for r	r new physics at the LHC 如何的 28 和 20 - 28 和 (3 - 120 的 1 - 100))				
	Binned in	$m_{\ell\ell}$	m ¹⁰⁰ _{T2}		

Opening the soft lepton frontier

Electroweakino SRs								
Exclusive Inclusive	$SRee-m_{\ell\ell}, SR\mu\mu-m_{\ell\ell}$ $SR\ell\ell-m_{\ell\ell}$	[1, 3] [1, 3]	[3.2, 5]	[5, 10] [1, 10]	[10, 20] [1, 20]	[20, 30] [1, 30]	[30, 40] [1, 40]	[40, 60] [1, 60]
Slepton SRs								
Exclusive Inclusive	$\frac{\text{SR}ee\text{-}m_{\text{T2}}^{100},\text{SR}\mu\mu\text{-}m_{\text{T2}}^{100}}{\text{SR}\ell\ell\text{-}m_{\text{T2}}^{100}}$		[100, 102] [100, 102]	[102, 105] [100, 105]	[105, 110] [100, 110]	[110, 120] [100, 120]	[120, 130] [100, 130]	[130, ∞] [100, ∞]

Striking gaps in ATLAS sensitivity

Closing the ATLAS wino-bino gap

Wino-bino simplified model

Down to $\Delta M \sim 2.5 \text{ GeV} \mid \text{Up to } m(\tilde{\chi}_2^0) \sim 170 \text{ GeV}.$ Priority in 2018: close gap at $m(\tilde{\chi}_2^0) - m(\tilde{\chi}_1^0) \approx 30 \text{ GeV}.$

Simplified models		Slepton	Wino		
considered	Higgsino LSP	Bino LSP	Bino LSP		
Use in this analysis	Optimisation &	Interpretation			
Compression	Radiative/mixing	ntal			
SM splitting analogy	W/Z bosons ~10% apart Charm quark &		au lepton mass ~30% apart		
Desirable feature	Weak scale naturalness§	Resolve $(g-2)_{\mu}$ tension [%]	Favoured by global fits		
LSP as dark matter	'Well-tempered' mixing [£]	Bino saturates relic der	nsity via coannihilation [^]		
E.g. cross-sections [#]	$\begin{array}{l} m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{\pm})=(110,105)\;GeV\\ \sigma(pp\to\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm})=4.3\;pb \end{array}$		$ m(\tilde{\chi}_2^0 = \tilde{\chi}_1^{\pm}) = 110 \text{ GeV} \\ \sigma(pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}) = 16 \text{ pb} $		

E.g. arXiv: ⁵1110.6926, [%]1505.05896, **1504.0326, [£]hep-ph/0601041 [^]1508.06608, [#]Resummino NLO+NLL 1304.0790

The construction assumes the τ leptons decay products are nearly collinear.

 $p_{\tau_i} = p_{\ell_i} + p_{\nu_i}$. Then the τ momentum is a rescaling of the observable lepton momenta p_{ℓ_i}

$$p_{\tau_i} = (1 + \xi_i)p_{\ell_i} \equiv f_i p_{\ell_i}$$
, (7)

where $f_i \equiv 1 + \xi_i$. To solve for the two unknown scalars ξ_i , one constrains the neutrino momenta using the missing transverse momentum ¹ as Ref. [46] prescribes

$$\mathbf{p}_{T}^{miss} = \xi_{1} \mathbf{p}_{T}^{\ell_{1}} + \xi_{2} \mathbf{p}_{T}^{\ell_{2}}.$$
 (8)

Equation (8) assumes the lepton-invisible colinearity limit $p_{r_i} \simeq \xi_i p_{\ell_i}$ and comprises two independent constraints in the transverse plane for the two unknown scalars ξ_i . This is solved by performing 2 × 2 matrix inversion in for example the x-y transverse plane

$$\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \frac{1}{p_x^{\ell_1} p_y^{\ell_2} - p_x^{\ell_2} p_y^{\ell_1}} \begin{pmatrix} p_x^{miss} p_y^{\ell_2} - p_x^{\ell_2} p_y^{miss} \\ p_y^{miss} p_x^{\ell_1} - p_x^{miss} p_y^{\ell_1} \end{pmatrix}.$$
(9)

Assuming highly boosted taus such that $m_{T_{\ell}}^2 \simeq 0$, the di-tau invariant mass squared is then given by

$$m_{\tau\tau}^2 = (p_{\tau_1} + p_{\tau_2})^2 \simeq 2p_{\ell_1} \cdot p_{\ell_2}(1 + \xi_1)(1 + \xi_2).$$
 (10)

 $m_{\tau\tau}^2$ can go negative when $f_i \equiv 1 + \xi_i < 0$. This happens when one of the leptons is anti-aligned with $\mathbf{p}_T^{\text{miss}}$ and $E_T^{\text{miss}} > |\mathbf{p}_T^\ell|$, such that the rescaling has to invert the direction to approximate the tau-momentum.

In slepton-pair production (Figure 1(b)), the event topology can be used to infer the slepton mass given the LSP mass. The stransverse mass [37, 38] is defined by

$$m_{\text{T2}}^{m_{\chi}}\left(\mathbf{p}_{\text{T}}^{\ell_{1}},\mathbf{p}_{\text{T}}^{\ell_{2}},\mathbf{p}_{\text{T}}^{\text{miss}}\right) = \min_{\mathbf{q}_{\text{T}}}\left(\max\left[m_{\text{T}}\left(\mathbf{p}_{\text{T}}^{\ell_{1}},\mathbf{q}_{\text{T}},m_{\chi}\right),m_{\text{T}}\left(\mathbf{p}_{\text{T}}^{\ell_{2}},\mathbf{p}_{\text{T}}^{\text{miss}}-\mathbf{q}_{\text{T}},m_{\chi}\right)\right]\right)$$

where the transverse vector \mathbf{q}_{T} is chosen to minimize the larger of the two transverse masses, defined by

$$m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}},\mathbf{q}_{\mathrm{T}},m_{\chi}\right) = \sqrt{m_{\ell}^{2} + m_{\chi}^{2} + 2\left(\sqrt{p_{\mathrm{T}}^{2} + m_{\ell}^{2}}\sqrt{q_{\mathrm{T}}^{2} + m_{\chi}^{2}} - \mathbf{p}_{\mathrm{T}}\cdot\mathbf{q}_{\mathrm{T}}\right)}.$$

The values of $m_{T2}^{m_{\chi}}$ are bounded by the slepton mass from above when the hypothesis invisible mass m_{χ} is set to the LSP mass. The stransverse mass m_{T2}^{100} with $m_{\chi} = 100$ GeV is used to define the binning of the slepton SRs as further described below. The value of 100 GeV is chosen based on the expected LSP masses of the slepton signals targeted by this analysis.