Differential Top Cross-section Measurements at ATLAS IoP 2018 Bristol

Michael Fenton

University of Glasgow m.fenton.1@research.gla.ac.uk

March 27, 2018

(日) (同) (三) (

Differential Top Cross-section Measurements at ATLAS

Outline

1 Motivation

2 Analysis Strategy

- 3 Uncertainties
- 4 Results
- 5 Summary

I consider myself something of a moral relativist.

¢

Why do differential measurements of $t\bar{t}$ processes? [1/2]

The top quark is unique in the SM due to its large mass:

- decay before hadronisation
 - $\rightarrow\,$ only quark that can be studied in isolation
 - \hookrightarrow precision QCD test
- same order as V.E.V in SM
 - $ightarrow m_t \simeq 173$ GeV, v=246 GeV
 - \hookrightarrow direct sensitivity to new physics

 $m_t = y_t v / \sqrt{2}$

$$\Delta m_h^t \sim -rac{m^2}{v^2}rac{\Lambda}{4\pi^2}$$

Why do differential measurements of $t\bar{t}$ processes? [2/2]

- Major background to many interesting searches like $t\bar{t}H$ or SUSY
 - Not always well described in current MC generators
 - \rightarrow Differential measurements crucial input to MC tuning efforts!

- Differential data very useful to theorists:

 - highly sensitive to NNLO effects Czakon et al

Outline

Motivation

2 Analysis Strategy

- 3 Uncertainties
- 4 Results
- 5 Summary

・ロト ・回 ・ ・ ヨト ・

1

Analysis Strategy

- Use 3 fb⁻¹ of $\sqrt{s} = 13$ TeV recorded by ATLAS in 2015
- Utilise lepton+jets decay mode
 - Top Decay: ${\sim}100\%~t
 ightarrow Wb$
 - \rightarrow Channel determined by decay of the two *W*'s
 - The goldilocks branching ratio, backgrounds, trigger efficiency

- Reconstruct in both resolved and boosted topologies
 - Sensitivity to both low and high $p_{\mathcal{T}}$ in same publication
- Publish both absolute and relative distributions
- Compare to many different MC predictions

イロト イポト イヨト イヨ

Publication Webpage
 Michael Fenton

Differential Top Cross-section Measurements at ATLAS

Resolved Selection

Boosted Selection

Boosted Top Tagger

- Scan over combinations of substructure variables
 - Best combination over full p_T range and for 50% and 80% WPs: jet mass and τ_{32}
- Define p_T dependent cuts for 50% and 80% WPs
 - In this measurement, we use the 80% WP

Unfolding procedure

- Using the Iterative Bayesian method in RooUnfold with 4 iterations
- Master formula:

Michael Fenton

8.0 Georg

0.7

0.6

0.5

0.4 0.3

0.2

0

Differential Top Cross-section Measurements at ATLAS

Outline

5 Summary

DQC

イロト イヨト イヨト イヨト

Uncertainties

- Small-R jet (resolved) and large-R jet (boosted) dominant
 - Energy scale/resolution (both), b-tagging (resolved), JSS modelling (boosted)
- Generator systematics important in both analyses
 - e.g. Powheg vs aMC@NLO, Pythia vs Herwig...

< A >

Outline

BBC	FD	OTER	
PORTSMOUTH Maguire 54 Norris 60 Etuhu 77	4-1	BIRMINGHAM Zigic 7	4/4 FT
Fulacs SUTE		Sent off: Murphy 59	
WEST HAM Bennett og 6	7 1-1	MIDDLESBRO Ogbeche 84	FT
SOUTHAMP'N	0-2	<mark>ROCHDALE</mark> D'Grady 45+1 Jones 68	
TRANMERE Mendy 44	1-0	PETERBORO	
WALSALL	0-1	COLCHESTER Bond 83	
Next page	Football	Top Sport Sp	port

Sorry Birmingham

Michael Fenton

Differential Top Cross-section Measurements at ATLAS

3 March 27, 2018 13 / 19

DQC

イロト イヨト イヨト イヨト

Top p_T

- MC predicts harder spectrum than observed in data
- Similar slope seen in both regions, as has been observed previously in I+jets and dilepton by ATLAS and → CMS

イロト イポト イヨト イヨト

Top p_T : Comparison of Resolved and Boosted

- *p_T* ranges are complementary
- Very similar trend in overlapping region between resolved and boosted reconstruction techniques

Michael Fenton

Sac

Top Rapidity

- Good agreement with all generators
- Very little sensitivity to extra radiation

Sac

イロト イポト イヨト イ

 χ^2 and *p*-vals

Resolved

	$p_{\mathrm{T}}^{t,\mathrm{has}}$	d	$ y^{t,ha} $	d
	χ^2/NDF	p-val	χ^2/NDF	p-val
Powheg+Pythia6	23.0/14	0.06	8.1/17	0.96
Powheg+Pythia6 (radHi)	23.8/14	0.05	8.5/17	0.95
Powheg+Pythia6 (radLo)	25.9/14	0.03	7.5/17	0.98
MadGraph5_aMC@NLO+Herwig++	24.4/14	0.04	10.8/17	0.87
Powheg+Herwig++	24.0/14	0.05	7.4/17	0.98
MadGraph5_aMC@NLO+Pythia8	21.8/14	0.08	7.8/17	0.97
Powheg+Pythia8	21.5/14	0.09	9.6/17	0.92
Powheg+Herwig7	15.4/14	0.35	9.3/17	0.93
Boosted				
	$p_{T}^{t,ha}$	d	$ y^{t,ha} $	d
	χ^2/NDF	p-val	χ^2/NDF	p-val
Powheg+Pythia6	10.2/7	0.18	2.9/9	0.97
Powheg+Pythia6 (radHi)	11.3/7	0.12	2.9/9	0.97
POWHEG+PYTHIA6 (radLo)	11.5/7	0.12	2.8/9	0.97
MadGraph5_aMC@NLO+Herwig++	11.1/7	0.13	4.6/9	0.87
Powheg+Herwig++	10.7/7	0.15	2.5/9	0.98
MadGraph5_aMC@NLO+Pythia8	10.9/7	0.14	7.2/9	0.62
Powheg+Pythia8	11.3/7	0.13	4.3/9	0.89

- 9.9/7 Numerical evaluation of agreement between data and MC
 - Takes into consideration relative importance of each bin as well as correlations

3.6/9

0.94

< ロト < 回 > < 回 > < 回 >

- One must take into consideration the NDF for χ^2
 - Can see more immediately in p-values

Powheg+Herwig7

0.20

nan

χ^2 and *p*-vals

Resolved

	$p_{\mathrm{T}}^{t,\mathrm{had}}$		$ y^{t, had} $	
	χ^2/NDF	p-val	χ^2/NDF	p-val
Powheg+Pythia6	23.0/14	0.06	8.1/17	0.96
Powheg+Pythia6 (radHi)	23.8/14	0.05	8.5/17	0.95
Powheg+Pythia6 (radLo)	25.9/14	0.03	7.5/17	0.98
MadGraph5_aMC@NLO+Herwig++	24.4/14	0.04	10.8/17	0.87
Powheg+Herwig++	24.0/14	0.05	7.4/17	0.98
MadGraph5_aMC@NLO+Pythia8	21.8/14	0.08	7.8/17	0.97
Powheg+Pythia8	21.5/14	0.09	9.6/17	0.92
Powheg+Herwig7	15.4/14	0.35	9.3/17	0.93

Boosted

	$p_{\mathrm{T}}^{t,\mathrm{nad}}$		$ y^{t,ha} $	d
	χ^2/NDF	p-val	χ^2/NDF	p-val
Powheg+Pythia6	10.2/7	0.18	2.9/9	0.97
Powheg+Pythia6 (radHi)	11.3/7	0.12	2.9/9	0.97
POWHEG+PYTHIA6 (radLo)	11.5/7	0.12	2.8/9	0.97
MadGraph5_aMC@NLO+Herwig++	11.1/7	0.13	4.6/9	0.87
Powheg+Herwig++	10.7/7	0.15	2.5/9	0.98
MadGraph5_aMC@NLO+Pythia8	10.9/7	0.14	7.2/9	0.62
Powheg+Pythia8	11.3/7	0.13	4.3/9	0.89
Powheg+Herwig7	9.9/7	0.20	3.6/9	0.94

C NEX MORESON

イロト イポト イヨト イヨ

ses and from the

"Numbers don't lie. That's where we come in.

- Agreement for p_T is overall pretty poor in both topologies
 - But surprisingly, resolved has worse p-vals than boosted!
 - \rightarrow Highlights the deficit at low p_T , often overlooked due to high p_T bins being bigger and drawing the eye

χ^2 and *p*-vals

Resolved

	$p_{\mathrm{T}}^{t,\mathrm{ha}}$	d	$ y^{t,ha} $	d
	χ^2/NDF	p-val	χ^2/NDF	p-val
Powheg+Pythia6	23.0/14	0.06	8.1/17	0.96
Powheg+Pythia6 (radHi)	23.8/14	0.05	8.5/17	0.95
Powheg+Pythia6 (radLo)	25.9/14	0.03	7.5/17	0.98
(MADGRAPH5_aMC@NLO+HERWIG++)	24.4/14	0.04	(10.8/17	0.87
Powheg+Herwig++	24.0/14	0.05	7.4/17	0.98
MadGraph5_aMC@NLO+Pythia8	21.8/14	0.08	7.8/17	0.97
Powheg+Pythia8	21.5/14	0.09	9.6/17	0.92
Powheg+Herwig7	15.4/14	0.35	9.3/17	0.93
Boosted				
	$p_{T}^{t,ha}$	d	$ y^{t,ha} $	d
	χ^2/NDF	p-val	χ^2/NDF	p-val
Powheg+Pythia6	10.2/7	0.18	2.9/9	0.97
Powheg+Pythia6 (radHi)	11.3/7	0.12	2.9/9	0.97
Powheg+Pythia6 (radLo)	11.5/7	0.12	2.8/9	0.97
(MADGRAPH5_aMC@NLO+HERWIG++)	11.1/7	0.13	4.6/9	0.87
Powheg+Herwig++	10.7/7	0.15	2.5/9	0.98
MadGraph5_aMC@NLO+Pythia8	10.9/7	0.14	7.2/9	0.62
Powheg+Pythia8	11.3/7	0.13	4.3/9	0.89
Powheg+Herwig7	9.9/7	0.20	3.6/9	0.94

- aMC@NLO+Herwig++ with the biggest $|y^{t, had}|$ disagreement in resolved, also present in boosted
 - Herwig++ now a legacy generator, and no longer used

DQC

イロト イヨト イヨト イヨト

 χ^2 and *p*-vals

Resolved

	$p_{\mathrm{T}}^{t,\mathrm{has}}$	d	$ y^{t,ha} $	d
	χ^2/NDF	p-val	χ^2/NDF	<i>p</i> -val
Powheg+Pythia6	23.0/14	0.06	8.1/17	0.96
Powheg+Pythia6 (radHi)	23.8/14	0.05	8.5/17	0.95
Powheg+Pythia6 (radLo)	25.9/14	0.03	7.5/17	0.98
MadGraph5_aMC@NLO+Herwig++	24.4/14	0.04	10.8/17	0.87
Powheg+Herwig++	24.0/14	0.05	7.4/17	0.98
MadGraph5_aMC@NLO+Pythia8	21.8/14	0.08	7.8/17	0.97
Powheg+Pythia8	21.5/14	0.09	9.6/17	0.92
Powheg+Herwig7	15.4/14	0.35	9.3/17	0.93
Boosted				
	$p_{T}^{t,ha}$	d	$ y^{t,ha} $	d
	χ^2/NDF	p-val	χ^2/NDF	<i>p</i> -val
Powheg+Pythia6	10.2/7	0.18	2.9/9	0.97
Powheg+Pythia6 (radHi)	11.3/7	0.12	2.9/9	0.97
Powheg+Pythia6 (radLo)	11.5/7	0.12	2.8/9	0.97
MadGraph5_aMC@NLO+Herwig++	11.1/7	0.13	4.6/9	0.87
Powheg+Herwig++	10.7/7	0.15	2.5/9	0.98
(MADGRAPH5_aMC@NLO+Pythia8)	10.9/7	0.14	7.2/9	0.62
Powheg+Pythia8	11.3/7	0.13	4.3/9	0.89

• Most concerning: Boosted $|y^{t, had}|$ aMC@NLO+Pythia8

9.9/7

• With Powheg+Pythia8 the new nominal $t\bar{t}$ sample, we would use this sample to evaluate our Matrix Element systematic

3.6/9

0.94

 \rightarrow A perfect example of where we have since used these results to tune and improve MC $\leftarrow \square \lor \leftarrow \square \lor \leftarrow \square \lor \leftarrow \supseteq \lor \leftarrow \supseteq \lor \leftarrow \supseteq \lor = \supseteq$

Powheg+Herwig7

0.20

Sac

Outline

- 1 Motivation
- 2 Analysis Strategy
- 3 Uncertainties
- 4 Results

5 Summary

< ロト < 回 > < 回 > < 回 >

DQC

Summary

• Differential cross sections of $t\bar{t}$ production important in SM and BSM physics, experiment and theory, both as a signal and a background

- Run 2 data confirms slope in the top p_T modelling
 - This was also seen in all Run1 measurements
 - NNLO corrections may account for this
- Biggest systematic is often the signal modelling
 - Can use these results to improve the MC going forward
- Modelling of *tt* process is generally good otherwise

Publication Webpage

BACKUP

DQC

イロト イヨト イヨト イヨト

Run 1 NNLO Comparison

・ロト ・回 ・ ・ ヨト ・

Resolved 8TeV vs 13TeV

Sac

< ロト < 回 ト < 三 ト < 三</p>

Boosted 8TeV vs 13TeV

Sac

< ロト < 回 > < 回 > < 回 >

Level	Detector		Particle
Topology	Resolved	Boosted	
Leptons	$\begin{split} d_0 /\sigma(d_0) &< 5 \text{ and } z_0 \sin \theta < 0.5 \text{ mm} \\ \text{Track and calorimeter isolation} \\ \eta &< 1.37 \text{ or } 1.52 < \eta < 2.47 \ (e), \eta < 2.5 \ (\mu) \\ E_{\text{T}}(e), p_{\text{T}}(\mu) > 25 \text{ GeV} \end{split}$		$ \eta < 2.5$ $p_{\rm T} > 25 {\rm ~GeV}$
Small-R jets	$ \eta < 2.5$ $p_{\rm T} > 25 \text{ GeV}$ JVT cut (if $p_{\rm T}$	< 60 GeV and η < 2.4)	$\begin{aligned} \eta &< 2.5 \\ p_{\mathrm{T}} &> 25 \text{ GeV} \end{aligned}$
Num. of small-R jets	≥ 4 jets	≥ 1 jet	Same as detector level
$E_{\mathrm{T}}^{\mathrm{miss}}, m_{\mathrm{T}}^{W}$		$E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} + m_{\mathrm{T}}^{W} > 60 \text{ GeV}$	Same as detector level
Leptonic top	Kinematic top-quark reconstruction for detector and particle level	At least one small- <i>R</i> jet with $\Delta R(\ell, \text{small-}R \text{ jet}) < 2.0$	
Hadronic top	Kinematic top-quark reconstruction for detector and particle level	The leading- p_T trimmed large- R jet has: $ \eta < 2.0$, $300 \text{ GeV} < p_T < 1500 \text{ GeV}$, $m > 50 \text{ GeV}$, Top-tagging at 80% efficiency $\Delta R(\text{large-}R$ jet, small- R jet associated with lepton) > 1.5, $\Delta \phi(\ell, \text{ large-}R$ jet) > 1.0	Boosted: $ \eta < 2.0$ $300 < p_{\rm T} < 1500$ GeV Top-tagging: $m > 100$ GeV, $\tau_{32} < 0.75$
b-tagging	At least 2 b-tagged jets	At least one of: 1) the leading- p_T small- R jet with $\Delta R(\ell, \text{ small-}R \text{ jet}) < 2.0 \text{ is } b\text{-tagged}$ 2) at least one small- R jet with $\Delta R(\text{large-}R \text{ jet}, \text{ small-}R \text{ jet}) < 1.0 \text{ is } b\text{-tagged}$	Ghost-matched <i>b</i> -hadron

590

Physics process	Event generator	Cross-section	PDF set for	Parton shower	Tune
		normalisation	hard process		
$t\bar{t}$ Nominal	Powheg-Box v2	NNLO+NNLL	CT10	Pythia 6.428	Perugia2012
$t\bar{t}$ PS syst.	Powheg-Box v2	NNLO+NNLL	CT10	Herwig++ $v2.7.1$	UE-EE-5
$t\bar{t}$ ME syst.	MadGraph5_	NNLO+NNLL	CT10	Herwig++ $v2.7.1$	UE-EE-5
	aMC@NLO				
$t\bar{t}$ rad. syst.	Powheg-Box v2	NNLO+NNLL	CT10	Pythia 6.428	'radHi/Lo'
Extra $t\bar{t}$ model	Powheg-Box v2	NNLO+NNLL	NNPDF3.0NLO	Pythia 8.210	A14
Extra $t\bar{t}$ model	Powheg-Box v2	NNLO+NNLL	NNPDF3.0NLO	Herwig v7.0.1	H7-UE-MMHT
Extra $t\bar{t}$ model	MadGraph5_	NNLO+NNLL	NNPDF3.0NLO	Pythia 8.210	A14
	aMC@NLO				
Single top t-channel	Powheg-Box v1	NLO	CT10f4	Pythia 6.428	Perugia2012
Single top s-channel	Powheg-Box v2	NLO	CT10	Pythia 6.428	Perugia2012
Single top Wt-channel	Powheg-Box v2	NLO+NNLL	CT10	Pythia 6.428	Perugia2012
$W(\rightarrow \ell \nu)$ + jets	Sherpa v2.1.1	NNLO	CT10	Sherpa	Sherpa
$Z(\rightarrow \ell \bar{\ell}) + \text{ jets}$	Sherpa v2.1.1	NNLO	CT10	Sherpa	Sherpa
WW, WZ, ZZ	Sherpa v2.1.1	NLO	CT10	Sherpa	Sherpa
$t\bar{t}+W/Z/WW$	MadGraph5_	NLO	NNPDF2.3LO	Pythia 8.186	A14
	aMC@NLO				

5900

イロト イヨト イヨト イヨト

Most backgrounds are estimated from Monte-Carlo samples out of the box, but we can do slightly better for W+Jets and QCD Multijet

W+Jets

- Exploit known charge-asymmetry in W^{\pm} production at *pp* collider to correct normalisation of MC
- Further, use data to correct poorly-modelled W+(b,c,light) fractions of MC prediction
 - Measure in control regions split by no. of 0.4 jets
 - Extrapolate to signal region

Process	Expected events		
-	Resolved	Boosted	
$t\bar{t}$	123800 ± 10600	7000 ± 1100	
Single top	6300 ± 800	500 ± 80	
Multijets	5700 ± 3000	300 ± 80	
W+jets	$3600 \begin{array}{c} +2000 \\ -2400 \end{array}$	500 ± 200	
Z+jets	1300 ± 700	60 ± 40	
$t\bar{t}V$	400 ± 100	70 ± 10	
Diboson	300 ± 200	60 ± 10	
Total prediction	$142000 \stackrel{+11000}{_{-12000}}$	8300 ± 1300	
Data	155593	7368	

イロト イヨト イヨト イ

Most backgrounds are estimated from Monte-Carlo samples out of the box, but we can do slightly better for W+Jets and QCD Multijet

QCD Multijet

- Multijet MC not reliable enough for our desired precision
- Instead derive fully from data using "matrix-method"
 - Estimate number of real/fake leptons in a control region by comparing loose / tight isolation
 - Extrapolate to tight isolated signal region

< A >

Resolved Unfolding Distributions

. ⊒ →

DQC

・ロト ・回 ・ ・ ヨト ・

Top p_T (Absolute)

イロト イロト イヨト イヨン

Top Rapidity (Absolute)

イロト イポト イヨト イ

$t\bar{t}$ kinematics (Absolute)

DQC

イロト イヨト イヨト イヨト