

Boosted Z+bb Analysis

<u>Chloe Gray</u> University of Glasgow

IOP APP and HEPP conference University of Bristol

26th March 2018

Motivation

- Hasn't been measured in the boosted phase space
- Important background for VH(bb), ttH(bb), exotics/resonances searches and measurements
- Sensitive to the b-flavour component of PDFs
 - ► Two different schemes can be used for heavy-flavour calculations:
 - <u>4 Flavour (4F) scheme</u>: no b-quark in PDF, b-quark in shower

► <u>5 Flavour (5F) scher</u>

At first sight, heavy flavor jets should be well described (large sing Dominant contribution is a subset of diagrams for light jet product

Motivation

 The opportunity to study g->bb splitting helps with parton-shower modelling:

- $q \longrightarrow Z$ $\overline{q} \longrightarrow \overline{b}$
- The low ΔR region corresponds to correlated b's which is typical of gluon splitting
- Found to be badly modelled in the ATLAS Run-1 Z+bb measurement
- We will be more sensitive to this region and we will be able to access smaller ΔR

 Measure differential fiducial cross sections of large-R jets and tagged sub-jet variables in boosted Z+bb events

- Unfold the data and compare differential cross sections to different MC predictions
- Primary observables:
 - ► ΔR(b,b)
 - Large-R jet mass and pT in the inclusive (no tagging requirements) and 2 b-tag regions

• To select the **Z+bb signal events**, we require:

- 2 leptons: electrons or muons
- ▶ 71 < *m*_{ℓℓ} <111 GeV

• To select the **Z+bb signal events**, we require:

- 2 leptons: electrons or muons
- ▶ 71 < *m*_{ℓℓ} <111 GeV
- I large-radius (R = 1.0) jet with pT > 200 GeV

To select the Z+bb signal events, we require:

- 2 leptons: electrons or muons
 - $71 < m_{\ell\ell} < 111 \text{ GeV}$
- 1 large-radius (R = 1.0) jet with pT > 200 GeV
- Look at jets inclusively (no tag requirement) and with 2 b-tags

9

To select the Z+bb signal events, we require:

- What about backgrounds?
- Main background is tt
- Apply MET < 100 GeV to reduce this</p>
- Z-mass window cut also helps

- 2 leptons: electrons or muons
- ▶ 71 < *m*_{ℓℓ} <111 GeV
- I large-radius (R = 1.0) jet with pT > 200 GeV
- Look at jets inclusively (no tag requirement) and with 2 b-tags

University **Data/MC comparisons**

- Generally good modelling of inclusive variables, with the data undershooting the MC for pT
- ~20% difference in the 2-tag variables
- Systematic band contains detector systematics, signalmodelling and top-modelling uncertainties
- Dominant uncertainties come from large-R jet energy scale and b-tagging

Unfolding overview

- We unfold the data to particle level to compare to predictions
- We are using the Fully Bayesian Unfolding (FBU) method (arXiv:1201.4612)
 Basic principle:
 - Compute the likelihood of the data, *d*, given the signal cross sections, *σ*, and nuisance parameters, *Λ*:

$$\mathcal{L}(d|\sigma,\Lambda) = \prod_{i \in \text{recobins}} \text{Poiss}(d_i|x_i(\sigma,\Lambda))$$
$$x_i(\sigma,\Lambda) = L(\Lambda) \times (b_i(\Lambda) + M_{ij}(\Lambda) \sigma_j)$$
$$\text{uminosity} \qquad \text{background} \qquad \text{migration matrix}$$

• Posterior probabilities are then extracted by sampling the full (σ, Λ) space

- Examples of nominal response matrices
- Events must fulfil particle and reco-level event definitions
- Both fairly diagonal

University of Glasgow Backgrounds + uncertainties

- Systematics and backgrounds handled using **nuisance parameters**
- Each systematic has a corresponding response matrix and background prediction
- Response matrices and backgrounds can be smoothly varied between the nominal and systematic
- Allows the unfolding to 'wander around' in the space of predictions

Posteriors

• The result is a set of posterior probability distributions

- Error band includes systematic uncertainties
- No strong disagreement with respect to sherpa 2.2.1 for large-R jet mass
- Some disagreement in 0.6-0.7 ΔR region

Summary + outlook

- Analysis methodology of the measurement of differential fiducial cross sections in Z+bb events has been presented
- The use of the Fully-bayesian unfolding method is discussed
- Some unfolded results using the method are shown
- No strong disagreement between the data and Sherpa 2.2.1 is observed so far
- We would like to compare to other predictions and consider systematic uncertainties on the truth prediction

B-tagging

- Track jets are ghost-associated to Large-R jet and b-tagging is applied to the track-jets
- mv2c10 > 0.6455 (70% working point)

Glasgow How is the b-tagging performed?

- Track-jets are considered b-tagged if they pass the 70% efficiency working point of the MV2c10 algorithm
- Properties of the b-hadron decay are used in the MV2c10 algorithm:
 - Secondary vertex displaced from primary vertex
 - Impact parameter (d0)
 - Decay length
- MV2c10 is an MVA (BDT specifically) which combines these properties
 - In this analysis, we tag small-radius (R = 0.2) track jets
 - These are ghost-associated to the large-radius jet in the event
 - This allows us to classify the large-R jet into tag regions

- •The significance plateaus at around 100 GeV
- •Left plot shows signal and background yields as a function of the met cut, and different Z-mass window cuts
- •If we apply a cut of 100 GeV, we can cut the background by a factor of two, whilst losing almost no signal

Systematics

- Detector-modelling systematics:
 - B-tagging efficiency
 - Large-R jet energy/mass scale and resolution
 - Lepton-related (ID, reconstruction)
 - Met-related
- Signal-modelling systematics considered:
 - Scale variations (factorisation and renormalisation)
 - PDF uncertainty
 - CKKW matching scale
 - Only truth-level samples exist for this variation so we will compute this using Rivet
- Top-modelling systematics considered:
 - Using the usual samples and prescription from TopWG:
 - Rad Hi/Lo
 - Hard scatter generation (aMC@NLO vs Powheg)
 - Parton shower (Pythia 8 vs Herwig++)

Fully-bayesian unfolding

- Bayes' rule: $P(\sigma,\Lambda|d) \propto \mathcal{L}(d|\sigma,\Lambda) \; \pi(\Lambda)$

niversity

Hasgow

- here Λ encodes "nuisance parameters" (e.g. systematic uncertainties) and is subject to our prior beliefs; d and σ are the data yields and signal cross sections, respectively.
- The likelihood of the data given a signal spectrum and Λ is then

$$\mathcal{L}(d|\sigma,\Lambda) = \prod_{i \in \text{ recobins}} \text{Poiss}(d_i|x_i(\sigma,\Lambda))$$

$$x_i(\sigma, \Lambda) = L(\Lambda) \times (b_i(\Lambda) + M_{ij}(\Lambda) \sigma_j)$$

- where x is the total number of predicted events in each reco bin, L is the luminosity, b is the number of background events, and M is the migration matrix.
- we then extract the posterior probability of a signal spectrum given the data by sampling points in (σ, Λ) space.