$Z(\ell^+\ell^-)H(c\bar{c})$ Search

IoP Annual APP and HEPP Conference, 26/3/18 Elliot Reynolds

Overview

Motivation

- With a SM BR of **2.9%**, $H \rightarrow c\bar{c}$ is the SM process with the largest Yukawa coupling to lack experimental evidence
- The smallness of y_cSM makes it highly susceptible to modifications from new physics

Aims

- Use ATLAS 2015+16 data (36.1 fb⁻¹) to set direct limit on *Z*(*ℓℓ*)*H*(*cc*)
- Focus on associated production with Z(ℓℓ) due to high S/√B, simple background composition & low exposure to experimental uncertainties
- Pioneer use of new Run 2 c-tagging algorithm

Present Constraints

- Indirect bounds on unobserved Higgs decays from global fits impose $BR(H \rightarrow c\bar{c}) < 20\%^{\dagger}$
- Run 1 ATLAS $H \rightarrow J/\psi\gamma$ search provides a limit of about 220 $\times y_c^{SM}$, with mild theoretical assumptions[‡]

Smaller contributions from $gg \rightarrow ZH$, but harder p_T^H , $\sigma \approx 0.12$ pb at $\sqrt{s} = 13$ TeV

[†]arXiv:1310.7029

[‡]arXiv:1501.03276

Elliot Reynolds

$Z(\ell^+\ell^-)H(c\bar{c})$ Search

IoP, 26/3/18

Data and Trigger

 $36.1~{\rm fb^{-1}}$ of $13~{\rm TeV}$ data, collected during 2015 and 2016 using a single electron or muon trigger

$Z \rightarrow \ell^+ \ell^-$ Selection

- Exactly 2 same flavour leptons (e or μ), passing loose identification, impact parameter and isolation requirements
- Require opposite charges (µ only)
- Both leptons $p_T > 7~{
 m GeV}$, with at least one $p_T > 27~{
 m GeV}$ and $|\eta| < 2.5$
- **81** GeV $< m_{\ell\ell} < 101$ GeV
- $p_T^Z > 75 \text{ GeV}$

$H \rightarrow c\bar{c}$ Selection

- At least 2 jets with $|\eta| < 2.5$ and $p_T > 20 \text{ GeV}$
- Leading jet $p_T > 45 \text{ GeV}$
- $H \rightarrow c\bar{c}$ candidate formed from two highest p_T jets
- Dijet $\Delta R_{c\bar{c}}$ requirement on $H \rightarrow c\bar{c}$ jets which varies with p_T^H
- At least one $H \rightarrow c\bar{c}$ jet *c*-tagged

Event Categorisation

Events divided into **4 categories**, each with $H \rightarrow c\bar{c}$ candidates from 1 or 2 *c*-tagged jets, and p_T^Z above or below 150 GeV

Elliot Reynolds

 $Z(\ell^+\ell^-)H(c\bar{c})$ Search

IoP, 26/3/18

light-jets

c-jets

b-jets

- BDT-based discriminant built using low-level *b*-tagging variables
- BDTs trained to separate c-jets from b-jets (x-axes), and from light-jets (y-axes)
- Rectangular cuts in 2D discriminant space optimised for analysis
- *c*-jet efficiency of 41% for a light-jet rejection of 10 and a *b*-jet rejection of 4
- Efficiency calibrated in data
- Uncertainties of 5% for b-jets, 20% for light-jets, and 25% for c-jets
- 'Truth-tagging', parameterised in p_T and $|\eta|,$ applied to simulated events to preserve statistics

Backgrounds and Simulation

Backgrounds

- Background dominated by Z + jets
- Smaller contributions from ZZ, ZW and $t\bar{t}$
- W + jets, WW, single-top and multi-jet shown to be negligible (< 0.5%)
- $ZH(b\bar{b})$ treated as a background, and constrained to SM expectation

Figure: arXiv:1802.04329

Simulation

Process	Generator	Parton Shower	Cross-section (QCD)
$qar{q} ightarrow ZH$	Powheg-BOX v2	Pythia 8	NNLO
gg ightarrow ZH	Powheg-BOX $v2$	Pythia 8	NLO+NLL
Z + jets	Sherpa 2.2.1	Sherpa	NNLO
ZW, ZZ	Sherpa 2.2.1	Sherpa	NLO
tŦ	Powheg-BOX $v2$	Pythia 8	NNLO+NNLL

Post-fit Δ*R_c* control distributions

 More control distributions in backup slides

 Good data-MC agreement observed in all post-fit control distributions

Quantifying the Search Results

Statistical Model Overview

- Simultaneous likelihood fit performed in all 4 event categories
- $\mathbf{m}_{c\bar{c}}$ used as observable
- Signal yield used as parameter of interest
- \blacksquare Z + jets background normalisation free in fit
- All other background yields constrained to theory expectations
- The ZV production rate was measured to cross-check the analysis methods

Implementation of Systematic Uncertainties

- Uncertainties modelled as nuisance parameters in fit, constrained using auxiliary measurements
- Grouped uncertainty breakdown performed

Δû -200-150-100 -50 0 50 100 150 200

Figure: arXiv:1802.04329

Signal and Background Modelling

- $ZH(c\bar{c}/b\bar{b})$ and ZZ/ZW normalisation uncertainties from theory
- $t\bar{t}$ normalisation uncertainty from data/MC ratio in $e + \mu$ CR
- Acceptance and shape uncertainties from MC generator comparisons

Table: arXiv:1802.04329

Source	$\sigma/\sigma_{ m tot}$
Statistical	49%
Z + jets Normalisation	31%
Systematic	87%
Flavour Tagging	73%
Background Modelling	47%
Lepton, Jet and Lumi.	28%
Signal Modelling	28%
MC statistical	6%

Experimental Uncertainties

- Leptons: Trigger, reconstruction, identification, track to vertex association (µ-only) and isolation scale factor uncertainties; with energy/momentum scale and resolution uncertainties
- **Jets:** Energy scale, resolution, and jet vertex tagging scale factor uncertainties
- **Flavour-Tagging:** Eigen-vector reduction, resulting in 11 NPs for fit
- Miscellaneous: Luminosity and pileup reweighting uncertainties

- No significant upward fluctuation observed
- Best fit signal strength value: $\hat{\mu} = -69^{+73}_{-129}$
- Data used to set 95% CL CL_s upper limit on signal strength
- Post-fit Z + jets normalisation parameters between 1.1 and 1.3

ZV Validation Measurement

• Observed significance of ZV peak 1.4 σ , compatible with the SM expectation of $(2.2\pm0.9)\sigma$

Limits on ZH(cc̄) Production

- 95% CL CL_s upper limit on $pp \rightarrow ZH(c\bar{c})$ production set at 107x the SM expectation (2.7 pb)
- Worlds tightest direct constraint on $H \rightarrow c\bar{c}!$

Consistency and Robustness Checks

- Compatibility p-value between fits with $\mu_{ZH(c\bar{c})}$ (un)correlated between categories is 66%
- Limit robust against modified $ZH(b\bar{b})$ rates, with variations between 0 and 2x the SM expectation causing a $\pm 5\%$ shift in the limit

	Post-fit $\mathcal{A} \times \epsilon$ [%]					
Process	1 c-tag		2 c-tags			
	$75 < p_{\mathrm{T}}^Z < 150GeV$	$p_{\rm T}^Z > 150GeV$	$75 < p_{\mathrm{T}}^Z < 150 GeV$	$p_{\mathrm{T}}^Z > 150 GeV$		
$ZH(c\bar{c})$	2.2	1.3	0.5	0.3		
$ZH(b\bar{b})$	1.7	1.0	0.2	0.1		

Table: arXiv:1802.04329

¹⁰/10

Summary

- First use of new c-tagging algorithms to perform search for $ZH(c\bar{c})$
- Methods validated through ZV-based cross-check
- $pp \rightarrow ZH(c\bar{c})$ production above 107× the SM expectation excluded at 95% CL!

Prospects

- Factor of $\sim 2^{\dagger}$ drop in total uncertainty possible through use of other VH channels $(W(\ell\nu) \text{ and } Z(\nu\bar{\nu}))$
- Further gains ($\sim 7\%^{\dagger}$) possible through use of BDT-based analysis strategy, or splitting event categories by jet multiplicity
- c-tagging performance improving rapidly, with next generation of algorithms utilising advanced 'deep-learning' techniques
- Improved statistical power at HL-LHC should reduce statistical and systematic uncertainties

[†]arXiv:1708.03299v2

Backup Slides

- c-tagging efficiencies
- Linear post-fit *m*_{cc} distributions
- Background flavour compositions:
 - 1 Z + jets
 - 2 Diboson
- Post-fit control distributions:

$$\begin{array}{ccc} 1 & p_T^Z \\ 2 & p_T^{lead \ jet} \\ 3 & p_T^{sublead \ jet} \end{array}$$

c-Tagging Efficiencies

light-jets

b-jets

Figure: arXiv:1802.04329

Post-Fit $m_{c\bar{c}}$ Distributions (Linear)

¹²/10

- Data consistent with background-only hypothesis
- Best fit signal strength value: $\hat{\mu} = -69^{+73}_{-129}$
- Data used to set 95% CL *CL_s* upper limit on signal strength
- Post-fit Z + jets normalisation parameters between 1.1 and 1.3

Z + jets Flavour Composition

Figure: arXiv:1802.04329

Diboson Flavour Composition

2 c-tags

Figure: arXiv:1802.04329

p_T^Z Distributions

> 150

150

V

75

Figure: arXiv:1802.04329

p_T^{lead} jet Distributions

> 150

 $\frac{p_{T}^{Z}}{GeV}$

< 150

75

Figure: arXiv:1802.04329

Elliot Reynolds

 $Z(\ell^+\ell^-)H(c\bar{c})$ Search

IoP, 26/3/18

$p_T^{sublead \ jet}$ Distributions

