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= From past to present
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= \Where to next!
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The very beginning

Prog. Theor. Phys. Vol. 46 (1971), No. 5 Namber o
wk X Projection Y Projection

A Possible Decay in Flight wof
of a New Type Particle X

Kiyoshi NIU, Eiko MIKUMO
and Yasuko MAEDA¥*

Institute for Nuclear Study
University of Tokyo
*¥Yokohama National University

August 9, 1971
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® Cosmic showers

® Observed in emulsion chambers

® 500 hours aboard a cargo plane

Assumed
decay mode M, GeV T sec
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Spectroscopy

450 L BABAR, PRL 90 (2003) 242001
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Production

103 |

® Charm production as precision
measurements

= Puts direct constraints on

charm production in atmosphere
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= Constrain PDFs and QCD processes

» High-energy neutrino background, e.g.

for lceCube

® Production in different collisions crucial in
identifying exotica

cosmic ray

atmosphere
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= Many limits are very old, some >20 years

® Some recent progress

® No clear sign yet of non-resonant FCNC component’

® Keep searching also for LFV/LNV processes

“but see LHCb, PRL 119 (2017) 181805



Charm: hardly a CKM triangle

® Mixing
= Huge cancellations
= Theoretically difficult
® CP violation
= Predictions even smaller

® Only up-type quark to form
weakly decaying hadrons

= Unique physics access
® Need highest precision

® Huge LHCDb dataset

= Blessing and a curse

| —
1000 TeV
Probing highest scales

— Isidori, Nir, Perez, ARNPS 60 (2010) 355
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Mixing

= q| M)

|A‘i[1’2> = p|ﬂ[0> -

Physical states Flavour eigenstates

MG, PoS FWNP (2015) 00
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= p|M°)-

|M; 2)

Physical states Flavour eigenstates

MG, PoS FWNP (2015) 00

: Mass difference
e~ *(cosh(yI't) — cos(aI't)) — QOscillation

Am = mo — ml'
: r = Am/F'

_ 1
P(M° — M t) = - lq
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= p|M°)-

| M 2)

Physical states Flavour eigenstates

Width difference
— Lifetime difference

AT =T, -Iy| y=Ar/@D)| |

MG, PoS FWNP (2015) 00

Mass difference
— Oscillation
Am = mo — ml'

: r = Am/F'

P(M° — M°,t)
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Need ~ 1000 lifetimes
to see a full oscillation!

|]\[1,2> = p|j\[0> -

Physical states Flavour eigenstates

Width difference
— Lifetime difference

AT =T, -Iy| y=Ar/@D)| |

MG, PoS FWNP (2015) 00

Mass difference
— Oscillation
Am = mo — ml'

: r = Am/F'

P(M° — M°,t)
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Mixing discovery

BABAR, PRL 98 (2007) 211802
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® Discovery through
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Mixing discovery

BABAR, arXiv:hep-ex/0607090

BABAR, PRL 98 (2007) 211802
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Belle, PRL 98 (2007) 211803
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Mixing discovery

PRL 110 (2013) 101802
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R(t) = WS()sz+\/RDy’;+ (=)

Nrs(t) 4 T
® First single-experiment measurement >50
significance

® Rotation of mixing parameters by strong
phase difference between CF and DCS

amplitudes: x,y = x’,y’

Using roughly

8.4x106 RS
and
3.6x |04 WS
candidates
10 2011 data: Ifb-!
<o
6-5;_ — Mixing fit

6F -~ No-mixing fit




Mixing howadays

[PV allowed

® Mixing established

= x*0 still open question

No mixin




Mixing-related
CP violation

ID12)=p|D0+q|DO)

Mixing: CP violation:
x=(m2-m )/l la/p|# |
y=(2-I'1)/2I P=arg(q/p)#0,T

Indirect CP violation:
acpi"d = -am y cosP - x sin®
with am = £(|9/,[2-1)
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® Measure asymmetry of effective lifetimes of D? and D©
decays to CP eigenstate

= =0 if physical states are CP eigenstates
= *0 implies CP violation

® [wo methods, two final states, one result
= Ar(K*K-)= (—-0.30+£0.32+0.10)x [ Q-3
= Ar (Tr*117)= (+0.461£0.58+0.12)% | 0-3

— 4T T T T T T T T T T = ' '
= [ rLHCh D= KK~  +Data | =00 _® B® THCH
= 1E — TFit - 0 Prompt signal + + +
ﬂ: E + + | —_E _OOIWj i v/\l—
0 %Wﬁﬁ ffffff e = = ~0.02f— }7 1 T—
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New WS KTT

PRD 97 (2018) 031101
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® [wice as precise as previous

results 8

® Still no sign for CPV

y' [107]
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Contributions

HFLAV WA May 2014, WS Kpi only
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i CP violation overview

CP violating weak phase

... 7o
m ..... ................... NOCPVlOIathn ...... ...................
CKM 2016

Arg(q/p) [deg.]

® No sign of CP violation

Asymmetry in mixing rate



Can we do better?

CP violating weak phase

CHARM 2015 NO CP VIQlatlon

Superweak constraint

= Assumes no new decay-specific
weak phase

= Cuichini et al. (2007)
= Kagan, Sokoloff (2009)

Arg(g/p) [deg.]

Reducing to 3 parameters

= tan® = (|-|q/p|)x/y

Consider WS measurement with ®=0

= yv'+=|q/p[t!(y’ cos® F X sinD)

Different parametrisation

l | | | I | | 1 I | | | l | | 1 | | | | l |

0.6 0.8 1 1.2 1.4 1.6
la/pl

= X2, Y12, P12

Current sensitivity already very good

= g(P)) = 1.7° Asymmetry in mixing rate



Can we do better?

® Superweak constraint 6

~
jab)
~
|4

= Assumes no new decay-specific
weak phase

= Cuichini et al. (2007)
= Kagan, Sokoloff (2009)

R [107]

® Reducing to 3 parameters N

Y — CcPVallowed
----------- No direct CPV -
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= tan® = (|-|q/p|)x/y ;

® Consider WS measurement with =0

= yv'+=|q/p[t!(y’ cos® F X sinD)

® Different parametrisation

= X2, Y12, P12

® Current sensitivity already very good

= g(d)) = 1.7° PRL |11 (2013) 25180




Can we do better?

® Superweak constraint

= Assumes no new decay-specific
weak phase

= Cuichini et al. (2007)
= Kagan, Sokoloff (2009)

o, [deg]
N

0
I CKM 2016

| No direct cPV |

e e e o e

® Reducing to 3 parameters

.................................................................................................

= tan® = (|-|q/p|)x/y

® Consider WS measurement with ®=0

10 __ ............................... ............................. ...............................
= y'*=|q/p[*!(y’ cos® F X’ sin®) E - Wio

® Different parametrisation X 30

~20 ; ; L § :

- X I 2’ I 2’ q) I 2 = | | | | | | | | | | | | | | | | | | | |

Y 0.2 0.4 0.6 0.8 1 1.2

® Current sensitivity already very good X4, (%)

= o(Pp) = 1.7°
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Direct CP violation

Direct CP violation:
[(DO—f)-I'(DO— )
[(DO—f)+I(DO—f)
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Acp(DO—K*K-) - Acp(DO— TT*1T") PLB 740 (2015) 158 PLB 769 (2017) 345
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® Once upon a time, it looked like there was...

= ... but that saga got discontinued
® A growing number of decay modes explored

= Phase-space integrated vs resonance structures
® A number of methods explored

= Model-(in)dependent, (un)binned, triple products, ...

20
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Where to now?

Ligeti can’t rule out SM effects

o /oltan: “While the central value of Aacp is much larger
than what was expected in the SM, we cannot yet

exclude that it may be due to a huge hadronic |

enhancement in the SM” Looks like ST,

Grossman can’t rule out BSM effects

# Yuval: “While the central value of Aacp fits nicely in the
SM, we cannot yet exclude that it may be due to NP”

s lopologically the above two statements are
equivalent

» Just like a bagel and a mug are

» Yet, to emphasize, whether Zoltan, me, or anyone m
else is the bagel is not the issue

s Theissue is how can we keep on checking

Yuval Grossman, Experimental Summary, CHARM 2012
22



Where to now?

Looks like BSM,
Ligeti can’t rule out SM effects

o /oltan: “While the central value of Aacp is much larger
than what was expected in the SM, we cannot yet
exclude that it may be due to a huge hadronic |
enhancement in the SM” Looks like ST,

Grossman can’t rule out BSM effects

# Yuval: “While the central value of Aacp fits nicely in the
SM, we cannot yet exclude that it may be due to NP”

s lopologically the above two statements are
equivalent

» Just like a bagel and a mug are

» Yet, to emphasize, whether Zoltan, me, or anyone
else is the bagel is not the ISsue who cares about bagels, i

s Theissue is how can we keep on checking

Yuval Grossman, Experimental Summary, CHARM 2012
22
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Multi-body decays

® Give access to full set of mixing and CP violation observables

= |n particular: sensitivity to x

= Require amplitude models

Realistically
need both ™ Or quantum-correlated measurements

® |n last ten years time-dependent measurements almost only in

DO— KsTT*TT-

= A missed opportunity!?

= Recent work by BABAR on DO—=1r*11- 110
= Surely something for Belle I

= Very promising studies at LHCDb

23

Potential of DO K+1r*1T*TT- at LHCDb

= 04 I ' I ' I ' I

| I HFLAV World Average 2017
| I This work

i WA + This work
02

&

08 09 1 LI
D. Muller, CERN-THESIS-2017-257

1{2
lq/pl
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LHCb Upgrades

1200 F

® Charm CP violation may well
be discovered soon

1000 |

Collision rate
800 + Production cross-section
—— + Hadronic selection efficiency

600 |

400 ¢

® Will require much more data
to

200 f

Relative yield w.r.t. 2011

O L I L L
2010 2015 2020 2025 2030 2035

Year

= |dentify underlying sources

= Challenge SM level in both
direct and indirect CPV

® | HCDb is the best bet for charm
for the foreseeable future

= Best shot at BSM physics in

Opportunities in flavour physics,

th e U P - q ua rl( se Cto r and beyond, in the HL-LHC era

Expression of Interest

24



ST Charm the challenge champion

x10°

F LHCb Preliminary
— 2011+12+15 data
C D' —Kwn

" Signal: 633 million

® Charm among the
most abundant
particles produced

= At LHC and
e*e” running at Y (4S)

Candidates per 19 keV/c*
—_— [\ W BN W @)
|

0 ] " " " h
1850 1900

LHCb-CONF-2016-005 Kt mass [MeV/c?]

® Technical challenges therefore driven by charm
= Data selection/reconstruction/storage
= Simulation

= Data analysis

25



B8 Charm the challenge champion

xlO

: LHCD Pr lm nary
— 2011+12+ 15dt
: D’ - Kn

" Signal: 633 million

® Charm among the
most abundant
particles produced

EEN W O\
TT TT

es per 19 keV/c?

High rates of low pt particles require complex
decisions early on in trigger chain ——

— Coarse decisions come with heavy penalties 7+ mass [MeV/c]
™Y — Need to avoid burning detectors for little gain JEFEIIEYEESS

= Data selection/reconstruction/storage
= Simulation

= Data analysis

25



ST Charm the challenge champion

x10] ,

F LHCb Preliminary
— 2011+12+15 data
T D' —Knt

" Signal: 633 million

® Charm among the
most abundant
particles produced

Candidates per 19 keV/c*
—_— [\ W BN W @)
|

) A generality 3
| : N
c I'S) LHCb-CONF-20I6-OO;850 K 'wt* mass EQ\E)IZV/CZ]
® Tecl » :herefore driven by charm
— s i
D iy speed DNStruction/storage

= Simulation

= Data analysis
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B8 Charm the challenge champion

xlO

® Charm among the L F o

mOSt abundant f;:: SE_IS)igr;1:K633million

particles produced .

g
= At LHC and S f
. . . N\
e e runnlng at Y(4S) LHCb-CONF-20I6-OO;850 K 7tt mass tlg\f)IgV/cz]

® Technical

Fitting large data sets is a growing challenge
— Will nheed more and more sophisticated models
— Playground for new approaches, e.g. with GPUs

= [Data S
= Simula

= Data analysis

25
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Conclusion

® Charm was discovered over 40 years ago

= Spectroscopy evolved a lot, but still leaves open questions
® Mixing discovery over |0 years ago

= But do D? and D° mesons oscillate, i.e. is x#0?
® Now:

= LHCDb in its last year of data taking, BESIII, (and still BaBar, Belle)
® Next:

= New facilities: Belle I, LHCb upgrades, PANDA, ...
® What will they bring?

= Charm baryon spectrum!?

= More exotic states!

= CP violation!
® Challenges ahead

= Both technical and physics-related

= Exploit synergies wherever possible
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