Imperial College London

Charged lepton flavor experiments

Lepton flavor

Very simple in the Standard Model

- 3 LH weak doublets + 3 weak RH singlets
- No neutrino masses
- So label everything by ℓ^{\pm} Higgs couplings (aka masses)
- Go home early [23rd August 1998]

But the SM is not correct. Neutrinos do have masses!

- We don't know how they get it, but we now have another basis to work in.
- And it looks nothing like the ℓ^{\pm} basis \blacktriangleright

Conclusion:

There is little reason to suppose the ℓ^{\pm} mass basis would be used by new physics either.

Adding new physics

Consider 2 possible types of flavour structure for new interactions:

- 1. Aligns with mass states (e, μ , τ), but couple differently to each (like mass terms). How can we detect this?
 - SM doesn't predict masses, but does predict how masses affect magnetic moments. Check this $\rightarrow g 2$

- 2. Does not align to mass states (like neutrino mixing): (Almost) inevitably gives rise to flavour changing effective operators
 - Look for flavor transitions without neutrinos $\rightarrow \mu \rightarrow e\gamma$, $\mu N \rightarrow eN$, $\mu \rightarrow eee$ etc

"The big move" - the Brookhaven ring arrives at Fermilab

Anomalous magnetic moment

Magnetic moment of spin-1/2 fermions:

$$\boldsymbol{\mu}_f = g_f \frac{q}{2m_f} \boldsymbol{s}$$

The Dirac equation gives $g_f = 2$.

Further 'anomalous' corrections $a_f = \frac{1}{2}(g_f - 2)$ arise from QFT.

Expand with perturbation theory: 1st order QED term by Schwinger:

Imperial College

More corrections

Since we can measure g very precisely, we need lots of terms in the anomalous part:

$$a = 1 + \Delta a_{\text{QED}} + \Delta a_{\text{EW}} + \Delta a_{\text{Had}} (+\Delta a_{\text{BSM}}?)$$

And, for example,

Discrepancy

Corrections depend on **flavor**

For a_e , theory and experiment famously agree to 9 s.f.

- Estimated error 200× larger
- But not as large as the discrepancy

Theoretical error is shrinking.

 Now better than previous measurement (BNL), but dominate after new measurement at FNAL

Phill Litchfield-

Measurement of $g_{\mu} - 2$

 $\boldsymbol{\omega}_{a} = \boldsymbol{\omega}_{s} - \boldsymbol{\omega}_{c} = -\frac{q}{m\mu} \left[a_{\mu}\boldsymbol{B} - \left(\begin{array}{c} a_{\mu} - \frac{1}{\gamma^{2} - 1} \end{array} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} \right]$ $\approx 0 \text{ at } \gamma = 29.3 \\ (p \approx 3 \text{GeV/c}) \end{array}$ Inject polarised μ^{+} into Penning

- trap • Spin precession and momentum rotation get out of alignment at frequency ω_a
- Energy and rate of positrons in decay depends on *s* · *p*

Therefore can see oscillation at ω_a in rate of high-energy e^+

g – 2 at FNAL

Refurbish the most recent (BNL) experiment with **more muons, more detectors**, and **better control of systematics**

Upgrades since BNL

g-2 Magnet in Cross Section

Repurpose the \overline{p} source at Fermilab as a pion decay ring.

- More muons overall (20×BNL), but lower bunch intensity
- Cleaner bunches with lower pion contamination.

Et voilà !

Number of high energy positrons as a function of time

Full (20×BNL) dataset by 2020 \rightarrow 0.14 p.p.m

JPARC g_{μ} – 2

Phill Litchfield

London

The $\pi E5$ area at PSI – home to MEG and Mu3e

$\ell \rightarrow \ell'$ transitions

In the ν +SM, lepton flavour transitions are supressed by $\mathcal{O}(10^{-54})$ because of the mass disparity between the *W* and neutrino.

This is 'accidental'; **new physics** that doesn't go via light neutrino states is not suppressed.

Therefore can search for *effective operators* with extremely large mass scales:

- No symmetry forbids this it's even predicted by the ν +SM
- But SM background is tiny (~40 orders of magnitude below current limits)
- Almost all BSM models produce large enhancement, unless *deliberately* excluded.

Principles of a $\mu \rightarrow e\gamma$ search

Use target to stop μ^+ , which decay at rest

Then 2-body decay should have:

- Back-to-back e^+ and γ
 - Measure angles $\theta_{e\gamma}$ and $\phi_{e\gamma}$
- $E_e = E_\gamma = 52.8 \text{ MeV}$
 - Measure energies E_e and E_{γ}
- Coincident timing
 - Measure time difference $t_{e\gamma}$

Remarks on backgrounds

- In MEG and the other lepton flavor experiments there is pretty generally a SM equivalent process adding two neutrinos.
- A falling background that ends when neutrinos are at rest
- Minimise it by improving energy resolution.
- Requirement common to all experiments of this type

E_{tot}

Imperial College

London

Also: Any *coincidence* measurement benefits from muons being spread out in time:

• Prefer DC beams (at cyclotrons)

Phill Litchfield

MEG at PSI

- DC muon beam from cyclotron ($10^7 \sim 10^8 \mu/s$ at PiE5)
- Muons from low momentum pions: $p_{\mu} = 29 \text{ MeV}/c$

MEG in operation

MEG in operation

MEG Results

Final results (2017):

- Didn't see anything.
- $Br(\mu \to e\gamma) \le 4.2 \times 10^{-13}$
 - Improved limit by ~30 over previous expriment (MEGA)

The Future: MEG-II

Imperial College

London

Phill Litchfield-

Mu3e at PSI

Looking for $\mu^+ \rightarrow e^+ e^+ e^-$, (hence the name.)

Can relate to $\mu \rightarrow e\gamma$ by SM conversion $\gamma \rightarrow ee$ but **direct process is also available** for (some) BSM operators

Principle is quite similar to $\mu \rightarrow e\gamma$:

- Use μ^+ at rest in minimal target
- Look for coincidence in **time** & **space**
- Need excellent **momentum resolution** (the ν -at-rest B/G again)
- Backgrounds from accidental coincidence
 - Again, want DC muon beam; so go to PSI
 - New Compact Muon beam at PiE5 (shared with MEG-II)

Mu3e detector

Similar requirements to MEG tracker [but 2π azumith]:

- Need good position and momentum resolution for electrons with $p \sim 30 \text{MeV}/c$
- Very low material budget: **0**.**001 X**₀ per layer
- Small scale: 18cm diameter \rightarrow high radiation.
- Design uses novel pixel (HV-MAPS) sensors supported on an ultra-light (Kapton) frame

Phill Litchfield-

Imperial College London

Mu3e detector

 Design uses novel pixel (HV-MAPS) sensors supported on an ultra-light (Kapton) frame

Phill Litchfield-

Imperial College London

Projected sensitivity

Need to supress accidental/combinatoric background to reach desired sensitivity

- Include scintillator fibre and tile detectors for timing
- Eliminate combinatoric B/G

Lowering the 1st COMET transport solenoid into place

Muon conversion

e e

- μ^- allowed to stop in suitable target \rightarrow will capture to atomic $1s_{\mu}$
- Both experiments use Aluminium
- Conversion from 1s orbital: $\mu N \rightarrow eN$ gives a mono-energetic electron at 105MeV ($\approx m_{\mu} - B_{1s}^{\mu}$)

'Normal' Decay-in-orbit is a background to be avoided (Tail up to 105MeV is tiny, but non-zero)

Backgrounds

Three main background processes: **SINDRUM-II (BR <7** × 10⁻¹³ @ 90%CL)

- Decay in orbit ►
 Energy resolution!
- **Decay in flight**: Electrons from energetic free muons can be boosted to 105MeV.
 - Momentum selection so only slow muons in beam
- Beam backgrounds:

10³ 10² 1

[Eur.Phys.J. C47 (2006) 337-346]

Significant number of prompt e^- and π^- produced by beam.

- Easy (in principle) solution: Bunch the muons and wait it out
- Possible because there is no combinatoric B/G

Waiting out the beam

Naïvely, this sounds easy, but...

- High intensity pulsed muon beams are uncommon → new facilities (J-PARC, FNAL muon campus)
- Require on interbunch gaps to be *extremely* free of particles
- Need $\tau_{\mu} \gg \sigma_{\text{Pulse}}$ so choose stopping targets with long lifetime Al (Z = 13, $\tau_{\mu} = 0.88 \mu s$) is ideal

Muon source

London

Main driver of sensitivity: Need lots of low energy muons!

- Use dedicated high-power *pulsed* proton beam lines (~8 GeV to limit \overline{p} production)
- Resonant slow extraction onto pion production target
- Collect *backward*-going pions with capture solenoid
- Pions decay to muons en-route to stopping target.
- Many neutrons produced, requires careful shielding. Curved transport lines helps to eliminate direct line-of sight.

Muon transport

Muon transport is a **curved solenoid**

- Particles are channelled in spiral paths [solenoid], which naturally tend up/down [curvature] depending on momentum and charge.
- Gives charge sign and momentum selection, enhanced by using a collimator.
- Use to eliminate high momentum muons, and other particles.

Mu2e overview

Target & detector surrounded by large aperture solenoid for (105MeV) electron transport

- Electrons spiral from target to ring-shaped straw tracker and EM calorimeter
- Downstream Stopping Target Monitor [UK] monitors muonic Xrays, for normalisation of muon capture rate

Phill Litchfield-

Mu2e detectors

Imperial College

London

- Straw tube tracker and high-resolution crystal calorimeter
- Inner radius of 380mm corresponds to $p_T \sim 60 \text{MeV}/c$
- 'Complete' tracks in straws need $p_T > 90 \text{MeV}/c$
- Centre has occupancy $\mathcal{O}(1)$ from Michel-like decays...
 - …and subject to even larger prompt pulse

COMET: Phase-I

Dual purpose:

- Characterise beam transport and secondary pion yield
- Make an intermediate-sensitivity measurement

Features:

- Shorter 90° transport and decay line
- Dipole compensation to keep desired momentum band horizontal
- Use **Cylindrical Drift Chamber** to make $\mu N \rightarrow eN$ measurement.
- Swap for centre-covering Straw Tube and LYSO crystal calorimeter for beam measurements (at lower intensity)

COMET photos

beam test

◄ Drift chamber before wiring for CR test

Imperial College London

CyDet reconstruction [UK]

COMET: Phase II

Full sensitivity version of experiment

The **muon transport** extended to **180°** for fewer

Use a second curved solenoid as an **electron spectrometer**. This filters out 'low' momentum and +ive backgrounds, and reduces beam flash

Imperial College London

Summary

SM assumed that flavour structure of the lepton sector was trivial.

• Neutrino oscillations blew that wide open. We must catch up!

g-2 anomaly has become gradually bigger over time.

• New experiment(s) will seek to confirm it, starting ~2020

Charged Lepton Flavour Violation

is having a slight renaissance.

 Several new experiments in multiple channels, driven by new beam and detector technologies.

Imperial College London

Any questions?

Ask

Me About

Reconstructed reaction of a g-2 collaborator to GR papers

Phill Litchfield-

Imperial College London

Reserves

GR corrections to g-2?

Ask me about general relativity

Imperial College

London

"Post-Newtonian effects of Dirac particle in curved spacetime"

arXiv: 1801.10244; 1801.10245; 1801.10246

[Caveat: I have barely skimmed the papers]

3rd paper posits that a previously unrecognised *general-relativity* (!) correction would explain the g-2 anomaly. But...

$$\boldsymbol{\omega}_{a} = \boldsymbol{\omega}_{s} - \boldsymbol{\omega}_{c} = -\frac{q}{m\mu} \left[a_{\mu} \boldsymbol{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} \right]$$

- As I understand it, g-2 response is that the correction only affects boxed term, so is O(10⁻³) smaller than assumed by authors
- Theorists on blogs also suggest the correction depends on absolute potential, not potential differences [so must be wrong]
 I don't know enough to judge on either of these two criticisms

Phill Litchfield-

More corrections

Since we can measure g very precisely, we need lots of terms in the anomalous part:

$$a = 1 + \Delta a_{\text{QED}} + \Delta a_{\text{EW}} + \Delta a_{\text{Had}} (+\Delta a_{\text{BSM}}?)$$

And, for example,

Theoretical work (on a_{μ})

$C_{4} =$

 $-1.9122457649264455741526471674398300540608733906587253451713298480060\\ 3844398065170614276089270000363158375584153314732700563785149128545391\\ 9028043270502738223043455789570455627293099412966997602777822115784720\\ 3390641519081665270979708674381150121551479722743221642734319279759586\\ 0740500578373849607018743283140248380251922494607422985589304635061404\\ 9225266343109442400023563568812806206454940132249775943004292888367617\\ 4889923691518087808698970526357853375377696411702453619601349757449436\\ 1268486175162606832387186747303831505962741878015305514879400536977798\\ 3694642786843269184311758895811597435669504330483490736134265864995311\\ 6387811743475385423488364085584441882237217456706871041823307430517443\\ 0557394596117155085896114899526126606124699407311840392747234002346496\\ 9531735482584817998224097373710773657404645135211230912425281111372153\\ 0215445372101481112115984897088422327987972048420144512282845151658523\\ 6561786594592600991733031721302865467212345340500349104700728924487200\\ 616042613254490690004319151982300474881814943110384953782994062967586\\ 787538524978194698979313216219797575067670114290489796208505...$

Page 14

Stefano Laporta, QED contributions to the electron q-2, FCCP 2017, Capri 7 Sep 2017

 ▲ QED component calculated to 4th order... should be enough for the time being

As always, the hard part is QCD

 But many recent improvements from Lattice calculations, new theoretical insight...

Phill Litchfield-

DeeMe concept

DeeMe in MUSE H-line (Technology)

Prompt burst would cause big problems for normal MWPC

Develop fast-switched MWPC. (see Teshima-san's poster)

PACMAN spectrometer magnet from PIENU experiment @ TRIUMF.

• B = **0.4T** at centre. For 105MeV, gives a **70°** bend.

Prototype of rotating SiC target fabricated, updating design.

Phill Litchfield-

μ to *e* conversion

A giant leap...

For the full COMET experiment sensitivity improvement over SINDRUM-II is **4 orders of** magnitude.

MC of background processes [especially '*tails'*] may not be good enough for optimal design

- Intermediate-scale experiment can measure background sources and inform design.
- Can still do competitive physics with a smaller apparatus

Mu2e overview

- S-shape and off-centre collimators that can rotate for BG studies
- Stopping **target** is 17 × 0.2mm Al foils
- Target & detector surrounded by large aperture solenoid for (105MeV) electron transport
- Electrons spiral from target to ring shaped tracker and EM calorimeter
- Downstream Stopping Target Monitor [UK] monitors muonic Xrays, for normalisation of muon capture rate

Muon transport

Muon transport is a **curved solenoid**

- Particles are channelled in spiral paths [solenoid], which naturally tend up/down [curvature] depending on momentum and charge.
- Gives charge sign and momentum selection, enhanced by using a collimator.
- Use to eliminate high momentum muons, and other particles.

Imperial College

London

Mu2e photos

Phill Litchfield-

COMET photos

 Magnets laid-out for switchyard

 Drift chamber before wiring for CR test

OMET

 Straw & ECal integration test

Imperial College London

Phill Litchfield-

Muon source

- Collect *backward*-going pions with capture solenoid
- Maximise field at target to give larger aperture angle

- Pions decay to muons en-route to stopping target.
- Many neutrons produced, requires careful shielding. The curved transport line helps to eliminate direct line-of sight.

Phill Litchfield-

Imperial College London

CyDet reconstruction

Phase II beamline optimisation

Imperial College

London

Expressed in terms of $\mathcal{R} = \frac{\Gamma(\mu N \to eN)}{\Gamma(\mu N \to \nu N')}$

Define single event sensitivity (S.E.S.): Value of \mathcal{R} s.t. mean expectation is 1 signal event.

 \therefore S.E.S. = $\frac{1}{N_{\mu} \cdot g \cdot f \cdot A}$ where:

g = 0.9 prob. for N to remain in ground state f = 0.61 fraction of nuclear capture $(1 - P_{\text{DIO}})$

In phase-1:

 $N_{\mu} = 1.5 \times 10^{16}$ number of stopped muons

A = 4.1% is the signal acceptance

- Dominated by geometric (18%) and time (30%) acceptance.
- Selection for B/G of 0.03 events

Phill Litchfield