

Gravity and Light: Binary Neutron Star Mergers Patrick Sutton School of Physics & Astronomy

Credit: NSF/LIGO/Sonoma State University/A. Simonnet

Credit: NSF/LIGO/Sonoma State University/A. Simonnet

Einstein: gravity = curved spacetime

Accelerating Mass: Gravitational Waves

Accelerating Mass: Gravitational Waves

Courtesy Caltech/MIT/LIGO Laboratory

The Hard Truth

spacetime line element (Pythagoras):

$$ds^2 = (\eta_{\alpha\beta} + h_{\alpha\beta}) \, dx^{\alpha} dx^{\beta}$$

wave equation:

$$\left(\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)h_{\alpha\beta} = -\frac{16\pi G}{c^4}T_{\alpha\beta}$$

stress tensor of the source

quadrupole approximation: 10⁻⁴⁴ N⁻¹ $h \simeq \frac{G}{c^4} \frac{MR^2 \Omega^2}{r}$

Courtesy Caltech/MIT/LIGO Laboratory

The Challenge

Neutron-star binary: $M = 1.4 M_{\odot}$ $r = 40 \,\mathrm{Mpc}$ $\Omega_{\rm orb} = 50 \, \rm Hz$ $h \simeq 10^{-21}$

Courtesy Caltech/MIT/LIGO Laboratory

LIGO Hanford Observatory

LIGO Hanford

LIGO Livingston

LIGO Livingston Observatory

LIGO Hanford

13

LIGO Livingston

Virgo Observatory (Italy)

T. Pyle, Caltech/MIT/LIGO Lab

ground motion: 10⁻⁸ m (10¹⁰ × bigger)

thermal vibrations: 10⁻¹² m (10⁶ × bigger)

laser wavelength: 10⁻⁶ m (10¹² × bigger)

gravitational wave: 10⁻¹⁸ m

LIGO ground motion: 10⁻⁸ m (10¹⁰ × bigger)

Quadruple pendulum suspension system: 10⁷ + Active seismic isolation: 10³

thermal vibrations: 10⁻¹² m (10⁶ × bigger)

Ultra-high mechanical quality (Q ~ 10⁶) fusedsilica optics

isolates thermal motion into narrow frequency bands

A Potted History

LIGO founded (US)

1970s

early experiments

GEO founded (UK/Germany)

1980s

LIGO construction

1990s

LIGO+GEO join forces

LIGO/GEO Advanced Advanced Virgo joint LIGO observing observing observing (France/Italy+) 2000s

14 SEP tA 20013017

LIGO-Virgo Black Hole Detections (so far)

LIGO-Virgo / Frank Elavsky / Northwestern (modified)

See ECR prize talk by Christopher Berry (17:05) Gravitational-wave astronomy and black hole astrophysics

GW170817: Gravitational-Wave Observations

A New Phenomenon

2017 Aug 17, 12:41 UTC

A Binary Neutron Star Merger

Neutron-Star Masses

GW170817: Multi-Messenger Observations

GRB 170817A LSC, Virgo, Fermi, INTEGRAL, ApJL 848, L13 (2017)

Source Localisation

Multi-Messenger Observatories

Multi-Messenger Observations

	/ /	/		
GW				
LIGO, Virgo				
v-rav				
Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AG	GILE, CALET, H.E.S.S., HAWC, H	Konus-Wind		
X-ray				
Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL				/~
UV				
Swift, HST				
Ontical				
Swope, DECam, DLT40, REM-ROS2, HST, Las Cumbres	, SkyMapper, VISTA, MASTER,	Magellan, Subaru, Pan-STARB81,		
HCT, TZAC, LSGT, T17, Gemini-South, NTT, GROND, SC BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the Sky, AS	DAR, ESO-VLT, KMTNet, ESO-V ST3-2, ATLAS, Danish Tel, DFN,	ST, VIRT, SALT, CHILESCOPE, TOROS, T805, EABA		
REM-ROS2, VISTA, Gemini-South, 2MASS, Spitzer, NTT,	GROND, SOAR, NOT, ESO-VLI	Kanata Telescope, HST		
Padio			1	
ATCA VLA ASKAP VLBA GMRT MWA LOFAR LWA	ATMA OVRO EVN &MEBLIN	MeerKAT Parkes SRT Effeishern		
		interiori, Farinos, erit, anoscerg		
			····	
-100 -50 0 50	10-2	10-1	10°	101
$t-t_c(s)$		$t-t_c$ (days)		

LSC, Virgo, + EM partners, ApJL 848, L12 (2017)

SSS17a / AT 2017gfo

LSC, Virgo, + EM partners, ApJL 848, L12 (2017)

Credit: Jennifer Johnson/SDSS / CC BY 2.0 (modified)

Swope & Magellan Telescopes

1M2H/UC Santa Cruz and Carnegie Observatories/Ryan Foley

1 H	Element Origins													2 He			
3 Li	4 Be											5 B	6 U	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			89 Ac	90 Th	91 Pa	92 U											

Merging Neutron StarsExploding Massive StarsBig BangDying Low Mass StarsExploding White DwarfsCosmic Ray Fission

Based on graphic created by Jennifer Johnsor

Standard Siren Cosmology

Host galaxy: NGC 4993

Distance to GW Source

Neutrino Observations (t_{GW} +/- 500 s) – no associated vs

ANTARES/IceCube/Pierre Auger/LIGO/Virgo ApJ 850 (2017) L35

Masses in the Stellar Graveyard

Observing Plans

KAGRA/LIGO/Virgo https://arxiv.org/abs/1304.0670 / Living Rev.Rel. 19 (2016)

GW170817

First detection of a binary neutron star coalescence.

- Coincident with:
 - a short GRB
 - an optical kilonova counterpart
 - plus X-ray and radio afterglows
- No detected neutrinos

- Implications for:
 - Origin of short GRBs
 - Speed of gravity
 - Origin of heavy elements
 - Measurement of the Hubble constant
 - ... and more!

SUPPLEMENTAL SLIDES

Neutron Star Deformability

Black Holes of Known Mass

LIGO/VIRGO

A New Phenomenon

2017 Aug 17, 1:41 pm

Expectations for Future Runs

Probability of observing

- N > 10 (blue)
- N > 35 (green)
- N > 70 (red)

highly significant events, as a function of surveyed time-volume.

3-Detector Localisation

