Dark Matter Search in a Proton Beam Dump with MiniBooNE

PRL118(2017)221803

outline

 MiniBooNE neutrino oscillation experiment
 MiniBooNE-DM experiment
 Results
 Future plans

Teppei Katori for MiniBooNE-DM collaboration Queen Mary University of London DMUK meeting, Univ. Bristol, UK, Jan. 17, 2018

Teppei Katori, Queen Mary U of London

17/01/18

Dark Matter Search in a Proton Beam Dump with MiniBooNE

PRL118(2017)221803

outline 1. MiniBooNE neutrino oscillation experiment 2. MiniBooNE-DM experiment 3. Results 4. Future plans

PRL 118, 221803 (2017)

PHYSICAL REVIEW LETTERS

week ending 2 JUNE 2017

ട്ട്

Dark Matter Search in a Proton Beam Dump with MiniBooNE

A. A. Aguilar-Arevalo,¹ M. Backfish,² A. Bashyal,³ B. Batell,⁴ B. C. Brown,² R. Carr,⁵ A. Chatterjee,³ R. L. Cooper,^{6,7} P. deNiverville,⁸ R. Dharmapalan,⁹ Z. Djurcic,⁹ R. Ford,² F. G. Garcia,² G. T. Garvey,¹⁰ J. Grange,^{9,11} J. A. Green,¹⁰ W. Huelsnitz,¹⁰ I. L. de Icaza Astiz,¹ G. Karagiorgi,⁵ T. Katori,¹² W. Ketchum,¹⁰ T. Kobilarcik,² Q. Liu,¹⁰ W. C. Louis,¹⁰ W. Marsh,² C. D. Moore,² G. B. Mills,¹⁰ J. Mirabal,¹⁰ P. Nienaber,¹³ Z. Pavlovic,¹⁰ D. Perevalov,² H. Ray,¹¹ B. P. Roe,¹⁴ M. H. Shaevitz,⁵ S. Shahsavarani,³ I. Stancu,¹⁵ R. Tayloe,⁶ C. Taylor,¹⁰ R. T. Thornton,⁶ R. Van de Water,¹⁰ W. Wester,² D. H. White,¹⁰ and J. Yu³

MiniBooNE-DM Collaboration

1. MiniBooNE neutrino oscillation experiment

2. MiniBooNE-DM experiment

3. Results

4. Future plans

MiniBooNE, PRD79(2009)072002,NIM.A599(2009)28

1. MiniBooNE experiment

Booster Neutrino Beamline (BNB) - 800(700)MeV neutrino(antineutrino) by pion decay-in-flight

1. Events in the Detector

MiniBooNE collaboration, NIM.A599(2009)28

Muons

- Long strait tracks
 - \rightarrow Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

MiniBooNE collaboration, NIM.A599(2009)28

Muons

- Long strait tracks
 - \rightarrow Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

MiniBooNE collaboration, NIM.A599(2009)28

Muons

- Long strait tracks
 - \rightarrow Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

MiniBooNE collaboration, NIM.A599(2009)28

 \mathbb{Z}

Muons

- Long strait tracks
 - \rightarrow Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings,

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

MiniBooNE, PRD82(2010)092005:91(2015)012004

1. Neutral Current Elastic (NCE) cross section measurements

MiniBooNE flux-integrated NCE differential cross section

- Total scintillation light is used to estimate total nucleon kinetic energy
- Q²_{QE} is reconstructed from total nucleon energy deposit

Total scintillation light ~ $\sum_i T_N^i$, T_N^i =kinitic energy of ith proton final state

1. MiniBooNE neutrino oscillation experiment

2. MiniBooNE-DM experiment

3. Results

4. Future plans

MiniBooNE, FERMILAB-PROPOSAL-1032

2. MiniBooNE sub-GeV dark matter search

1. MiniBooNE 2. DM search Results Conclusion

 10^{3}

Boehm et al., Nucl. Phys. B683(2004)219, PRL92(2004)101301

2. MiniBooNE sub-GeV dark matter search

Sub-GeV dark matter

- Not accessible by direct detection experiments
- → Beam dump experiment

MiniBooNE
 DM search
 Results

Boehm et al.,Nucl.Phys.B683(2004)219,PRL92(2004)101301 Batell et al.,PRD80(2009) 095024, deNiverville et al.,PRD84(2011) 075020

2. MiniBooNE sub-GeV dark matter search

Sub-GeV dark matter

- Not accessible by direct detection experiments
- \rightarrow Beam dump experiment

Minimal Vector Portal Model

- Light DM with U(1) gauge boson (dark photon)
- dark photon kinematically mixed with photon
- 4 model parameters : m_χ , m_V , arepsilon , g_D

$$L_{V,\chi} = -\frac{1}{4}V_{\mu\nu}^{2} + \frac{1}{2}m_{V}^{2}V_{\mu}^{2} + \frac{\varepsilon}{2}V_{\mu\nu}F^{\mu\nu} + |D_{\mu}\chi|^{2} - m_{\chi}^{2}|\chi|^{2} \cdots$$

- MiniBooNE
 DM search
 Results
- 4. Conclusion

Boehm et al.,Nucl.Phys.B683(2004)219,PRL92(2004)101301 Batell et al.,PRD80(2009) 095024, deNiverville et al.,PRD84(2011) 075020

2. MiniBooNE sub-GeV dark matter search

Sub-GeV dark matter

- Not accessible by direct detection experiments
- \rightarrow Beam dump experiment

Minimal Vector Portal Model

- Light DM with U(1) gauge boson (dark photon)
- dark photon kinematically mixed with photon
- 4 model parameters : m_χ , m_V , arepsilon , g_D

Production

- beam dump from photon-dark photon mixing

Teppei Katori, Queen Mary U of London

MiniBooNE
 DM search
 Results

4. Conclusion

Boehm et al.,Nucl.Phys.B683(2004)219,PRL92(2004)101301 Batell et al.,PRD80(2009) 095024, deNiverville et al.,PRD84(2011) 075020

2. MiniBooNE sub-GeV dark matter search

Sub-GeV dark matter

- Not accessible by direct detection experiments
- \rightarrow Beam dump experiment

Minimal Vector Portal Model

- Light DM with U(1) gauge boson (dark photon)
- dark photon kinematically mixed with photon
- 4 model parameters : m_χ , m_V , arepsilon , g_D

Production

- beam dump from photon-dark photon mixing

Detection

- dark matter - nucleon elastic scattering

University of London

- MiniBooNE
 DM search
 Results
- 4. Conclusion

$$\begin{split} L_{V,\chi} &= -\frac{1}{4}V_{\mu\nu}^2 + \frac{1}{2}m_V^2 V_{\mu}^2 + \frac{\varepsilon}{2}V_{\mu\nu}F^{\mu\nu} \\ &+ \left|D_{\mu\chi}\right|^2 - m_{\chi}^2|\chi|^2 \cdots \end{split}$$

MiniBooNE, FERMILAB-PROPOSAL-1032

2. MiniBooNE beam dump mode

Booster Neutrino Beamline

- 8 GeV proton primary beam

FNAL Booster

2. MiniBooNE beam dump mode

Booster Neutrino Beamline

- 8 GeV proton primary beam
- beam is steered to "miss" the beryllium target

2. MiniBooNE beam dump mode

Booster Neutrino Beamline

- 8 GeV proton primary beam
- beam is steered to "miss" the beryllium target beam-dump mode flux / neutrino mode flux
- neutrino flux reduced ~x40

1. MiniBooNE 2. DM search Results 4. Conclusion MiniBooNE, FERMILAB-PROPOSAL-1032

2. MiniBooNE beam dump mode

Booster Neutrino Beamline

- 8 GeV proton primary beam
- beam is steered to "miss" the beryllium target beam-dump mode flux / neutrino mode flux

Φ_{Orr}(Ε_ν)/Φ_ν(Ε_ν

10⁻¹

- neutrino flux reduced ~x40
- neutrino interaction rate reduced ~x50

Data

- 8 month run during 2014
- 1.86E20POT collected

1. MiniBooNE 2. DM search Results Conclusion

__ν_

_ν_e

1. MiniBooNE neutrino oscillation experiment

2. MiniBooNE-DM experiment

3. Results

4. Future plans

3. Results

MiniBooNE
 DM search

3. Results

4. Conclusion

3. Results

MiniBooNE
 DM search

3. Results

4. Conclusion

Combined fit, simultaneous fit of 4 samples

- 1. beam dump mode NCE (signal)
- 2. Neutrino mode NCE
- 3. beam dump mode CCQE
- 4. Neutrino mode CCQE

beam dump mode NCE (signal)

Teppei Katori, Queen Mary U of London

22

3. Results

MiniBooNE
 DM search
 Results

4. Conclusion

. (GeV²)

3. Results

MiniBooNE
 DM search
 Results

4. Conclusion

3. Results

MiniBooNE
 DM search
 Results

4. Conclusion

3. Results

MiniBooNE
 DM search
 Results
 Conclusion

beam dump mode NCE (signal)

Simultaneous fit result

- 8 month run during 2014
- 1.86E20POT collected
- We find **1465**±**38** events after selection

1548±**198 events** by cosmic rays and constrained neutrino backgrounds

→ no evidence of Dark Matter

3. MiniBooNE N $\chi \rightarrow$ N χ limit

We achieved the best limit for dark matter masses of $0.01 < m\chi < 0.3 \text{ GeV}$ in nucleon scattering mode ϵ : kinetic mixing m_V : dark photon mass $\alpha_D = g_D/4\pi$: dark photon coupling $(m_V = 3m\chi, \alpha_D = 0.5)$

1. MiniBooNE neutrino oscillation experiment

- 2. MiniBooNE-DM experiment
- 3. Results
- 4. Future plans

4. Future plans: Dark Matter Time-of-Flight

4. Future plans: Inelastic and electron channels

Dark matter $m\chi > 50$ MeV can be selected by ToF

New channels to study

- inelastic DM scattering
- e-DM scattering

4. Future plans: Beam-dump mode with Fermilab SBN

Lol of new beam dump mode run was submitted to Fermilab PAC, Nov. 2017 (Manchester, Liverpool, Queen Mary)

Jeen Mary

University of London

Many new ideas were presented

- Simultaneous run with neutrino mode (x50 neutrino bkgd reduction)
- New target block

(~x1000 neutrino bkgd reduction)

Next Step in Accelerator Sub-GeV Dark Matter Searches at FNAL: An Expression of Interest to Improve the BNB Beam Dump for SBN

R.G. Van de Water (LANL, P-25 Subatomic Physics) FNAL PAC Nov 16-17, 2017

Conclusion

MiniBooNE neutrino beam line enhances production of sub-GeV DM with by the beam dump mode

Scintillation light is used to reconstruct the total nucleon energy

We achieved the best limit for dark matter masses of $0.01 < m\chi < 0.3$ GeV in nucleon scattering mode

Future plans

- electron and π^o channels will be used for sub-GeV DM searches
- Event timing with RF bunch should allow dark matter TOF
- Lol of beam dump mode run was submitted to Fermilab PAC (Nov. 2017)

Thank you for your attention!

Tyler Thornton (main analyzer) Indiana university

backup

Cox, PhD thesis (2008)

2. Neutral Current Elastic (NCE) event reconstruction

Scintillation vs. Cherenkov

University of London

- In general, total scintillation light is used to estimate total nucleon kinetic energy
- Simple model works below Cherenkov threshold

neutrino NCE Cherenkov threshold

1. MiniBooNE DM search Results Conclusion Perevalov, PhD thesis (2009)

2. Neutral Current Elastic (NCE) event reconstruction

Perevalov, PhD thesis (2009)

2. Neutral Current Elastic (NCE) event reconstruction

MiniBooNE
 DM search
 Results
 Conclusion

$$f_t^{cer}(t_{corr}, \mu_{cer}, E) = \frac{1}{\sqrt{2\pi}\sigma(E, \mu_{cer})} \exp\left[-\frac{(t_{corr} - t_0(E, \mu_{cer}))^2}{2\sigma(E, \mu_{cer})^2}\right]$$
$$f_t^{sci}(t_{corr}) = \frac{1}{2\tau} \exp\left(\frac{\sigma^2}{2\tau^2} - \frac{t_{corr} - t_0}{\tau}\right) \operatorname{Erfc}\left[\frac{\sigma}{\sqrt{2\tau}} - \frac{t_{corr} - t_0}{\sigma}\right]$$

Teppei Katori, Queen Mary U of London

36

MiniBooNE, PRD82(2010)092005:91(2015)012004

2. Neutral Current Elastic (NCE) cross section measurements

1. MiniBooNE

anti-neutrino NCE differential cross section

DM search

MiniBooNE flux-integrated NCE differential cross section

- In general, total scintillation light is used to estimate total nucleon kinetic energy

neutrino NCE differential cross section

Dharmapalan, Fermilab user's meeting2016

Understanding the beam-off-target configuration

1. MiniBooNE 2. DM search 3. Results 4. Conclusion

- Beam position/alignment: Low intensity test beam to SWICs at 25 m
- B field measurements and decay • pipe inspection: Robot FRED
- Copper cables upgraded optic fibers to relay beam timing information

∖ Target hall in MI 12 University of London

Dharmapalan, Fermilab user's meeting2016 MiniBooNE: DM source

MiniBooNE
 DM search
 Results
 Conclusion

- Understanding the beam-off-target configuration
 - Beam position/alignment: Low intensity test beam to SWICs at 25 m
 - B field measurements and decay pipe inspection: Robot FRED
 - Copper cables upgraded optic fibers to relay beam timing information

17/01/18

Dharmapalan, Fermilab user's meeting2016

MiniBooNE
 DM search
 Results
 Conclusion

FRED: "Fermilab Robot for Exploration of Decay pipes"

LSND, PRD64(2001)112007

1. LSND

LSND makes muon anti-neutrino beam from decay-at-rest pion beam, to search electron anti-neutrino appearance.

$$\overline{\nu}_{\mu} \xrightarrow{\text{oscillation}} \overline{\nu}_{e} + p \rightarrow e^{+} + n$$

L/E~30m/40MeV~0.7

$$n+p \rightarrow d+\gamma$$

Data is consistent with two massive neutrino oscillation model with $\Delta m^2 \sim 1 eV^2$, 87.9 ± 22.4 ± 6.0 (3.8. σ)

3 types of neutrino oscillations are found: LSND neutrino oscillation: $\Delta m^2 \sim 1eV^2$ Atmospheric neutrino oscillation: $\Delta m^2 \sim 10-3eV^2$ Solar neutrino oscillation : $\Delta m^2 \sim 10-5eV^2$

But we cannot have so many Δm^2 !

 $\Delta m_{13}^2 \neq \Delta m_{12}^2 + \Delta m_{23}^2$

MiniBooNE, PRL110(2013)161801

1. MiniBooNE

MiniBooNE observed event excesses in both mode

Neutrino mode $162.0 \pm 28.1 \pm 38.7$ (3.4 σ)

Antineutrino mode $78.9 \pm 20.0 \pm 20.3$ (2.8 σ)

42

1. MiniBooNE 2. DM search 3. Results

4. Conclusion

1. Cross section model

MiniBooNE, PRD79(2009)072002

1. Neutrino beam

1. Neutrino beam

1. Neutrino beam

Conclusion

antineutrino mode

55%

41%

4%

16%

detector

0.6%

1. Neutrino beam

University of London

Neutrino flux from simulation by GEANT4

MiniBooNE is the v_e (anti v_e) appearance oscillation experiment, so we need to know the distribution of beam origin v_e and anti v_e (intrinsic v_e)

dirt

The MiniBooNE Detector

- 541 meters downstream of target
- 12 meter diameter sphere
 (10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂)
 - (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

48

The MiniBooNE Detector

- 541 meters downstream of target
- 12 meter diameter sphere (10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂)
 (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

49

ueen Mary

University of London

The MiniBooNE Detector

- 541 meters downstream of target
- 12 meter diameter sphere
 - (10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂) (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

1. MiniBooNE detector

Queen Mary

University of London

The MiniBooNE Detector

- 541 meters downstream of target
- 12 meter diameter sphere

(10 meter "fiducial" volume)

- Filled with 800 t of pure mineral oil (CH₂)
 (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

MiniBooNE, NIM. A599(2009)28

1. Events in the Detector

Times of hit-clusters (subevents) Beam spill (1.6µs) is clearly evident simple cuts eliminate cosmic backgrounds

Neutrino Candidate Cuts <6 veto PMT hits Gets rid of muons

> >200 tank PMT hits Gets rid of Michels

Only neutrinos are left!

ueen Mary

University of London

MiniBooNE, NIM. A599(2009)28

1. Events in the Detector

Times of hit-clusters (subevents) Beam spill (1.6µs) is clearly evident simple cuts eliminate cosmic backgrounds

Neutrino Candidate Cuts <6 veto PMT hits Gets rid of muons

> >200 tank PMT hits Gets rid of Michels

Only neutrinos are left!

ueen Mary

University of London

MiniBooNE, NIM. A599(2009)28

1. Events in the Detector

Times of hit-clusters (subevents) Beam spill (1.6µs) is clearly evident simple cuts eliminate cosmic backgrounds

Neutrino Candidate Cuts <6 veto PMT hits Gets rid of muons

> >200 tank PMT hits Gets rid of Michels

