

Search for light Dark Matter with NEWS-G

Konstantinos Nikolopoulos

University of Birmingham

Open UK meeting on Dark Matter January 17, 2018, University of Bristol, UK

SEDINE prototype at LSM

New Experiments With Spheres - Gas

Spherical Proportional Counter

Spherical Proportional Counter

Capacitance dependence on size

First Spherical Proportional Chamber made out of LEP RF Cavities

I. Giomataris and G. Charpak

Extended versus point like energy deposition

Background Rejection

Low Energy Capabilities

SEDINE: Low background SPC at LSM

A competitive detector and a testing ground

for NEWS-G/SNO

▶6.3mm diameter sensor

Laboratoire Souterrain de Modane

SEDINE: Operation and data taking conditions

- Continuous data taking for 42.7 days
- 99.3% Neon + 0.7 % CH₄ at 3.1 bar
 - Exposure 9.7kg.days
- Anode high voltage 2520 V, no sparks
 Absolute Gain around 3000.
 - Loss of gain 4% throughout the period
- Sealed mode, no recirculation.
- Canberra charge sensitive preamplifier (RC=50 µs)
- Calibration with ³⁷Ar gaseous source and the 8 keV fluorescence line of Copper

⁶⁰Co contamination of 1mBq/kg
 Background rate = 0.3-0.5 event/keV/kg/day
 Limit surface exposure for pure copper
 ²¹⁰Pb, ²¹⁰Bi contamination of 1nBq/kg
 Background rate = 0.1 event/keV/kg/day
 Chemical Cleaning
 Effect of Cleaning
 High energy events 180 mHz → ~2mHz
 Low energy events 400 mHz → ~20mHz
 Overall: Competitive Background levels

SEDINE:Volume and surface events simulation

Anticipated main backgrounds: Compton electrons (volume) ²¹⁰Pb decay products (surface) Pulse simulations include: Electric field (FEM) Diffusion (Magboltz) Avalanche process Signal induction Preamplifier delta response Simulation input to a Boosted Decision Tree to determine the optimised signal region for various candidate masses

Astropart.Phys. 97 (2018) 54-62

NEWS-G / LSM Exclusion Limits

Astropart.Phys. 97 (2018) 54-62

Limit set on spin independent WIMP coupling with standard assumptions on WIMP velocities, escape velocity and with quenching factor of Neon nuclear recoils in Neon calculated from SRIM

Installation in SNOLab: Fall 2018

Detector

- Gases: Ne, He, CH₄
- Operation in high pressure (10 bar)
- Large volume detector (140cm diameter)
- Low background Copper Shell (12mm thick)
- Shielding:
 - 40cm Polyethylene
 - Boron sheet
 - 25cm Lead
 - 3cm archaeological Lead

Simulation done with 12mm thick 140cm diam copper sphere full with 99% Ne 1%CH4, 11.43 kg of gas

Source Position	Mass (kg) or Su	rface (c	n Source	evts/kg/day/[(µBq/kg) or (nBq/cm2)]	contamination	units	evts/kg/day <1ke
CopperSphere	627.83 kg		Co60	0.0018	30	µBq/kg	0.054
CopperSphere	627.83 kg		U238	0.0036	3	µBq/kg	(0.011)
CopperSphere	627.83 kg		Th232	0.0049	12.9	µBq/kg	0.063
InnerSurface	57255 cm ²		Pb210	0.012	0.16	nBq/cm2	0.002
ArchLead	2108.95 kg		U238	0.001	61.8	µBq/kg	0.062
ArchLead	2108.95 kg		Th232	0.0011	9.13	µBq/kg	0.010
Rod	0.0931721 kg		Co60	2.95E-007	30	µBq/kg	0.000
Rod	0.0931721 kg		U238	1.81E-006	3	µBq/kg	0.000
Rod	0.0931721 kg		Th232	2.11E-006	12.9	µBq/kg	0.000
Wire	2.66005e-05	kg	Co60	1.48E-010	31000	µBq/kg	0.000
Wire	2.66005e-05	kg	U238	2.12E-009	300000	µBq/kg	0.001
Wire	2.66005e-05	kg	Th232	1.42E-009	50000	µBq/kg	0.000
Wire	2.66005e-05	kg	K40	5.41E-010	1660000	µBq/kg	0.001
LabArea			TI208/K40				0.076

External BG with SNO

Lead shield

Flux

Predicted exclusion limits for NEWS-G / SNO

Hypothesis for NEWS-SNO expected sensitivity: 100 kg.days exposure @ 10 bar, threshold 1 electron (~40 eV), 200eV window

Going further: Achinos

- Need for high pressure operation and larger volumes!
 But both gain and drift time function of E/P ...
- Achinos: Use multiple balls placed at equal distances on a sphere
 - Same gain but increased field at large radii
 - Decoupling Gain -Drift
 - Tunes Volume electric field
 - Anodes can be read out individually
- Prototypes with 5, 11 and 33 metallic balls of 2 mm in diameter successfully operated

3D printed Achinos sensors built and operated

Versatile Detector

The NEWS-G Collaboration

Queen's University Kingston – G Gerbier, P di Stefano, R Martin, T Noble, D Dunrford, S Crawford, A Brossard, A Kamaha, P Vasquez dS, Q Arnaud, K Dering, J Mc Donald, M Clark, M Chapellier, A Ronceray

IRFU/CEA Saclay – I Giomataris, M Gros, C Nones, I Katsioulas, T Papaevangelou, JP Bard, JP Mols, XF Navick,

Laboratoire Souterrain de Modane, IN2P3, U of Chambéry – F Piquemal, M Zampaolo, A Dastgheibi-Fard

Aristotle University of Thessaloniki – I Savvidis, A Leisos, S Tzamarias, C Elefteriadis, A Liolios

Laboratoire de Physique Subatomique et Cosmologie Grenoble -

D Santos, JF Muraz, O Guillaudin Pacific National Northwest Lab – E Hoppe, D Asner Royal Military College Canada, Kingston – D Kelly, E Corcoran SNOLAB, Sudbury – P Gorel University of Birmingham – K. Nikolopoulos, P Knights

Associated lab : TRIUMF - F Retiere

Summary

Astropart. Phys. 97 (2018) 54-62

- First competitive results with gas detector in Dark Matter search
- Further He and H runs planned with SEDINE @LSM
- SEDINE essential for @SNOLAB optimisation
- NEWS-G @SNOLAB
 - Larger detector and target mass
 - Improved shield /materials/procedure
 - Installation at SNOLAB in 2018
- R&D on-going: cleaning methods, underground electroformed sphere, "achinos" type sensor, multi channels sensor, low pressure operation, ... JINST 12 (2017) P12031

Many physics opportunities!

