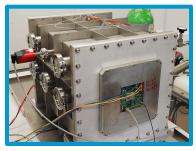


Towards CYGNUS: A directional WIMP detector

Callum Eldridge

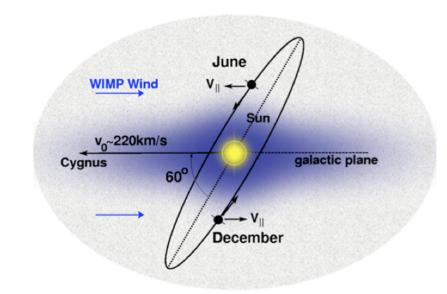
CYGNUS Proto-collaboration

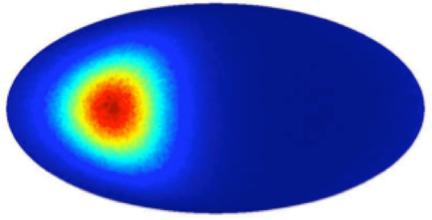
- 5 current generation detectors
- ~80 scientists
- 15 institutions
- 8 countries
- First meeting in 2007
- Recent RnD grants in Italy, Japan and Australia



NEWAGE

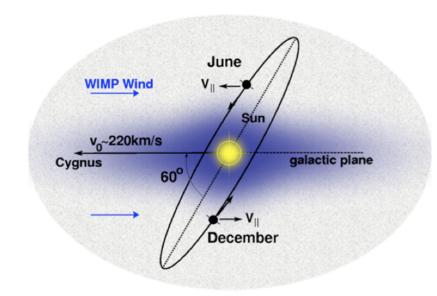
MIMAC

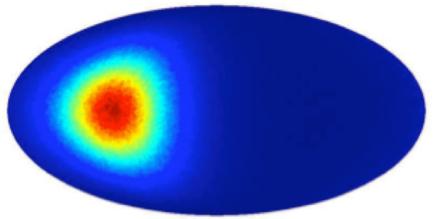




WIMP Wind

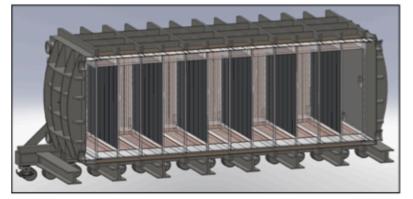
- Movement of Sun relative to dark matter halo
- Signal is from approximate direction of Cygnus Constellation





WIMP Wind

- Directionality gives a clean discovery parameter
- Can probe below neutrino floor


CYGNUS-1000

- Need capability to resolve recoil tracks
 - → low pressure gas TPC

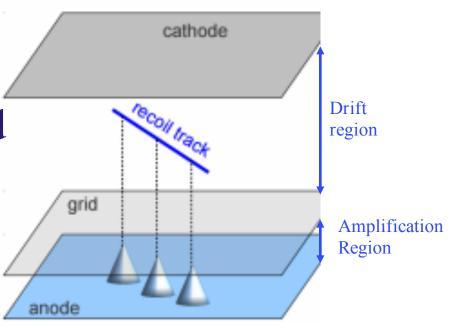
(there are some other options –ask me at the end)

• Consequently very low fiducial mass/volume

(~1 ton / 1000 m³ at 50 Torr SF₆)

• Fluorine target: CF₄ or SF₆

Diagram: Schematic for DRIFT-III



TPC basics

Ionising particle creates track

 Charge cloud is drifted to the anode

• Signal is read out at the anode

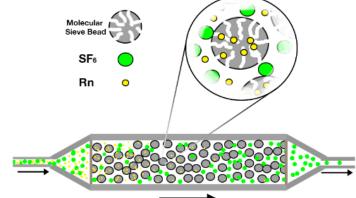
TPC Instrumentation

- Ultimately limiting factor is cost
- Trade off between fiducial mass and resolution
- Must be robust

Readout type	Dimensionality	Segmentation $(x \times y)$
planar GEM	1-d (z)	$10 \text{ cm} \times 10 \text{ cm}$
large pixels	1-d(z)	$3 \text{ mm} \times 3 \text{ mm}$
wires	2-d (<i>yz</i>)	1 m wires, 2 mm pitch
optical CMOS	2-d(xy)	$200 \mu m \times 200 \mu m$ - t.b.d.
resistive strip Micromegas	3-d (<i>xyz</i>)	1 m strips, 200 μ m pitch
pixel ASIC	3-d (<i>xyz</i>)	$200 \ \mu m \times 200 \ \mu m$

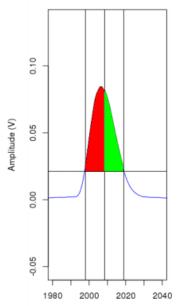
SF₆

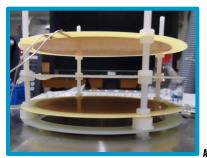
- Negative ion drift reduced diffusion allows larger volume detector
- High fluorine content lots of target nuclei
- Non-toxic makes operation in mines easier
- Minority carriers fiducialisation



Sheffield – Radon removal in SF₆

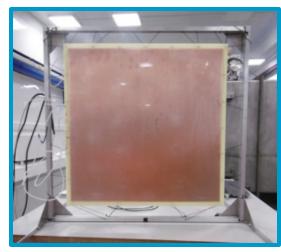
- Vessel of proposed size requires gas re-circulation
- Radon = large source of background
- Molecular sieve traps radon

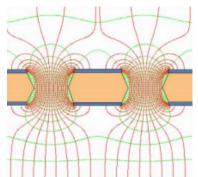

A.C. Ezeribe et al. 2017 JINST 12 P0902



Sheffield – head/tail in SF₆

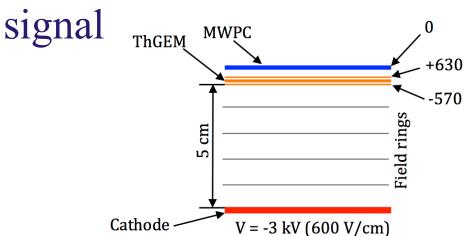
- Slowing of recoil nucleus produces a "Head" & "Tail" to charge cloud
- Enables determination of track direction
- Demonstrated with neutron recoils in for first time SF₆

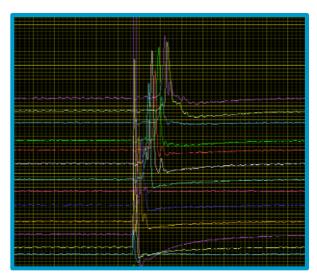




Sheffield – Large Area ThGEM

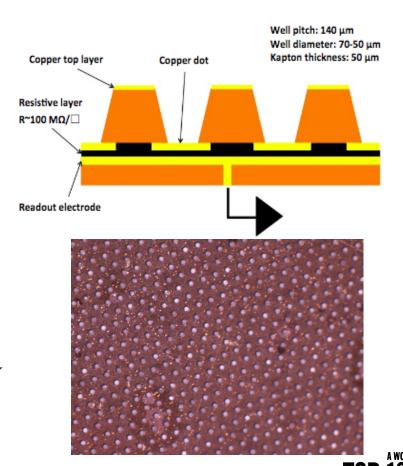
- Cheap, robust, large area readout?
- 1D only get head/tail
- But we can combine with other, less robust readouts





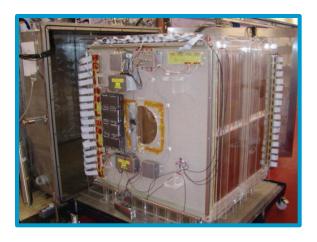
Sheffield – ThGEM/Wire hybrid

- Charge amplification across thGEM
- Wires used to readout



Sheffield – µRWELL

- Fabricated by CERN
- Strip readout
- Similar to thin GEM technology
- Resistive layer and backing board hopefully make it fairly robust



Sheffield – Other work

- DRIFT- head/tail + axial sensitivity in CS₂+CF₄+O₂

 (J.B.R. Battat et. al. 2016 JINST 11 P10019)
- Background simulations for CYGNUS-1000
- Multiplexing demonstration

A. C. Ezeribe et. al. arXiv:1711.00943

CYGNUS KM

- ~3 m³ vessel deployed in Kobe/Kamioka, Japan
- Also used as demonstrator for readout technologies
- 18 'windows' to mount readouts
- o ThGEM

- o Pixel chips
- o μRWELL
- o MWPC
- Optical

o MicroMegas

To Discover And Understand.

(BACKUP) Other directional detection techniques

- Nuclear emulsions
- Columnar recombination (Xe)
- Anisotropic scintillators (ZnWO₄)
- Planar graphene target
- Carbon nanotubes
- DNA/RNA strands

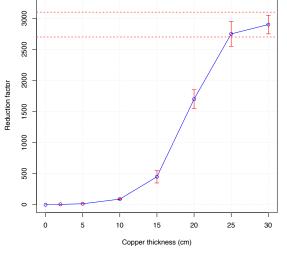
Cygnus 1000 vessel considerations

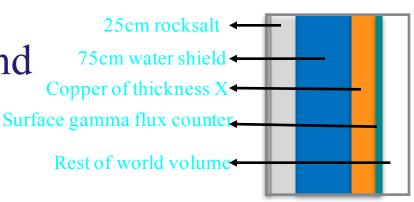
- Background Sources magnitude, type
 - o Rock

- o Vessel o Radon
- Material strength, background, outgassing
 - o Acrylic
- o Steel

- Copper
- Shielding neutrons, gammas, location
 - Water

- o Acrylic
- Vessel material
- Shape available space, maintenance, cost
 - Distributed
 Modular


Single vessel



Sheffield – Background simulations

- Model gamma and neutron creation and propagation
- Lots of competing considerations
- Aim for ~one background event /year

Gas - Pressure

+Lower gas impurity
-More Impurities
+Longer recoil track length
-Shorter recoil track length
-More Expensive vessel
-Less fiducial mass/volume
-More fiducial mass/volume

Science goals

- Robust confirmation of WIMP discovery above neutrino floor (DAMA?)
- Discovery of WIMP below neutrino floor (1-1000 GeV)
- Discover WIMP streams (Sagittarius stream?)
- Solar neutrino observatory

Contents

- WIMP wind & need for directional detection
- The CYGNUS-1000 detector
- TPC's general points
- Current work at Sheffield

