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Direct detection experiments
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Dark matter with low-threshold

~ detectors

Detectors which are sensitive to energies
below a keV can detect sub-GeV mass
dark matter, and more exotic models too.
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Strongly-interacting dark matter

-+ Increasing the DM-nucleon
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Detecting WIMPs

Weakly-inteacting dark matter should pass unimpeded through
the Earth and atmosphere on its way to the underground detector.

Direct Detection

Experiment e.g. LUX



Detecting SIMPs

Strongly-interacting dark matter will lose energy through scattering
with the Earth, such that it reaches the detector without enough energy
to produce an observable signal.
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Detecting SIMPs on the surface

A surface-based direct detection experiment will have a larger background,
but will have increased sensitivity to SIMP dark matter.
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Even larger cross sections are
ruled out by astrophysical

: 7 SKYLAB
constraints. L

At larger cross sections
constraints come from balloon
and rocket-borne experiments.

log

Direct detection experiments -35
are not sensitive to larger DM-
nucleon cross sections, in the
so-called SIMP region.
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New results from a surface-based

cryogenic detector

Gram-scale crystals mean that

the experiment has an extremely

low energy threshold, but at the

expense of a smaller exposure.
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SIMPs in a surface-based cryogenic

experiment

* The rate of events expected
from SIMPs is far larger than
the observed rate.

« Sensitivity to SIMPs is lost
when the spectrum drops
below the 20eV threshold due
to SIMPs scattering in the
shielding and atmosphere.

Data from: Results on MeV-scale dark matter
from a gram-scale cryogenic calorimeter
operated above ground, Eur.Phys.J. C77 (2017)
no.g, 637, arXiv:i1707.067
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New constraints on SIMP dark matter
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 The blue dashed line
shows projections for a
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CNO Neutrino Grand
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The solar metallicity problem

® Our knowledge of the Sun's composition comes from comparing simulations to
data from probes such as helioseismology and electromagnetic emission from
the photosphere.
Helioseismology depends on the whole Sun.

® The photospheric abundances depend on the solar surface and are inferred by
comparing absorption line measurements to models of the solar atmosphere.
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Helioseismology and the photosphere disagree

® Metallicity (C, N and O) ' Black = o
measurements from the ooof  high sosso ]

metallicity

photosphere are consistent with

the low-metallicity model. S ooosf :
. . . , . , “«©
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needs to be larger i.e. the high- _ _
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. . 0.0 0.2 0.4 0.6 0.8 1.0
So models can fit either the R/
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, . . as a function of depth (Serenelli et al. 2009). The standard solar models shown
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b Oth AGS05) and the present work (blue line, AGSS09). Each model has indepen-
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\X/e need more data_ discrepancy starts in earnest in all three cases. :
Asplund et al,, Ann.Rev.Astron. Astrophys. 47 (2009) 481—52?2



' CNO Neutrinos - a solution

'® A crucial extra measurement would be the metallicity in the solar core. One potential

- solution to the metallicity problem is that we do not understand conductivity and :
diffusion in the Sun. Changing this would lead to a different metal content in the core.

§° The CNO neutrino flux depends sensitively on the metallicity of the solar core.
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CNO neutrinos and new physics?

Measuring the CNO flux will tell us if the diffusion model is wrong, or whether something
else is causing the discrepancy, potentially even dark matter (e.g. Frandsen and Sarkar,
:arXivi1003.4505 or Vincent, Scott, and Serenelli, arXivi1411.6620),
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Flux (cm-? s°t)

Detecting CNO Neutrinos

Measuring the CNO flux is extremely difficult as their spectrum is sub-
dominant compared to the other solar neutrino sources e.g. berylium-7

or pep.
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Measuring the CNO flux with
electron-recoil experiments

CNO neutrinos scattering with electrons lead to signals with energies up to
around 1.4 MeV, which can be observed e.g. in liquid scintillator detectors. These
tend to have large signal rates but also difficult backgrounds (e.g. beta-decay).
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Events per keV per ton-year

Measuring the CNO flux with
nuclear-recolil experiments

Looking for nuclear-recoils could be a viable alternative, but
experiments will need both a low threshold and a large exposure.
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Technologies for CNO-NR
observation

1005

CRESST with its 0.5g
sapphire crystal can get :
the required threshold -
with oxygen, but the
exposure is far too

small.

- SuperCDMS in

: SNOLAB looks to be
* the best hope with

- germanium.
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Conclusion

® Looking for nuclear-recoils with energies below a keV opens up
new regions of dark matter parameter space towards low masses

. and also high cross sections, :
§ ® Such technology could also be used to measure the CNO neutrino

flux, which would help towards solving the solar metallicity

. problem.
: ® This will require large exposures to be obtained by around the

latter part of the next decade, at which point SNO+ will likely have
got to a CNO flux measurement first.
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