

Dark Matter searches at the LHC

Henning Flächer
H.H. Wills Physics Laboratory
University of Bristol

DM UK Meeting, Bristol – 17 Jan 2018

Dark Matter @ the LHC

- Overwhelming evidence for Dark Matter but corresponding particle missing from SM
- When searching for Dark Matter, the big question is:
 - How does it interact?
- All evidence for Dark Matter so far is gravitational
 - Why look for it a colliders?

Introduction/Motivation

- Why look for DM at colliders?
- Assumption that in early universe DM was in thermal equilibrium with SM matter
 - some interaction with SM matter
- As universe expands and cools down, DM decouples
- DM abundance determined by annihilation cross section at freeze-out
- A particle with weak scale interactions and mass of O(100 GeV) gives relic density in agreement with our measurements
 - "WIMP miracle"

$$\Omega_{\chi} h^2 \simeq 0.1 \times \left(\frac{3 \times 10^{-26} cm^3 s^{-1}}{\langle \sigma v \rangle} \right)$$

$$\langle \sigma v \rangle \sim 3 \times 10^{-26} cm^3 s^{-1}$$

 $\sim \pi \alpha^2 / (100 \text{ GeV})^2$

What interactions to probe?

- Start with minimal assumptions
 - **Effective Field Theories**

- Simplified models
 - Resolve the interaction

- Described in terms of Lorentz structure, DM mass and cut-off scale
- Need to be careful at LHC @ 13 TeV
- EFT only valid if $Q^2 \ll M$

- Come with different assumptions for interactions/mediators
- scalar (ψψ)

- vector ψγ^μψ,
- pseudo scalar $(\psi \gamma^5 \psi)$ axial-vector $(\psi \gamma^\mu \gamma^5 \psi)$

What interactions to probe?

- Start with minimal assumptions
 - Effective Field Theories

- Simplified models
 - Resolve the interaction

We also typically need additional radiation (ISR) as WIMPs are invisible to the detectors

Simplified Dark Matter models

Typically parameterized by 5 parameters:

- mass of DM particle, m_{χ}
- mass and width of mediator particle, m_{med} , Γ_{med}
- coupling of mediator to SM sector, g_q
- coupling of mediator to DM sector, g_{χ}

- Searches focus on two main signatures:
- DM production via mediator
 - Missing energy searches as a result of escaping DM particles
 - Mono-X signatures
 - X = jet, photon, W, Z, H,...
 - Resonant production of mediator particle and decay back to SM particles
 - di-jet, di-lepton,di-top,...
 resonances

- A/A-V: $g_a = 0.25$, $g_{\chi} = 1$
- S/P-S: $g_q = 1$, $g_{\chi} = 1$

Dark Matter LHC Working Group

- Systematic approach pursued through Dark Matter LHC Working group
 - https://lpcc.web.cern.ch/content/lhc -dm-wg-wg-dark-matter-searcheslhc
 - with involvement of both experimentalists and theorists
- Recommendations for models and their implementation
- Guidelines on how to compare collider searches with direct detection limits
- Recommendations for comparison of searches for heavy mediators of DM production

Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

August 8, 2016

Daniel Abercrombie MIT, USA Nural Akchurin Texas Tech University. USA

Ece Akilli Université de C
Juan Alcaraz Maestre Ce
(CIEMAT), Spain
Brandon Allen MIT, USA
Barbara Alvarez Gonzale
Jeremy Andrea Institut P
Université de Strasbourg
Alexandre Arbey Univers
Ecole Normale Supérieu.
Georges Azuelos Univen
Patrizia Azzi INFN Padoo
Mihailo Backović Centre
catholique de Louvain, B
Yang Bai Department of
Swagato Banerjee Unive
James Beacham Ohio SI
Alexander Belyaev Ruthe

Antonio Boveia (editor) C
Amelia Jean Brennan Th
Oliver Buchmueller Impe
Matthew R. Buckley Dep.
Giorgio Busoni SISSA ar
Michael Buttignol Institut
Université de Strasbourg
Giacomo Cacciapaglia U
France
Regina Caputo Santa Cr

Regina Caputo Santa Cr of Astronomy and Astrop Linda Carpenter Ohio St. Nuno Filipe Castro LIP-A Ciências da Universidad. Guillelmo Gomez Ceballt Yangyang Cheng Univers John Paul Chou Rutgers Arely Cortes Gonzalez II Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models

of dark matter

CERN-LPCC-2017-01

Antonio Boveia, ^{1,*} Oliver Francesco D'Eramo, ⁴ Albı Caterina Doglioni, ^{7,*} Matı Kristian Hahn, ^{9,*} Ulrich H Jan Heisig, ¹² Valerio Ippo Valentin V. Khoze, ¹⁵ Sucl Steven Lowette, ¹⁸ Sarah I Christopher McCabe, ^{19,*} § Tristan du Pree, ¹ Antonio Kai Schmidt-Hoberg, ¹⁴ W Lian-Tao Wang, ²⁵ Steven

Editor

¹CERN, EP Department, CH-1211
²High Energy Physics Group, Black
London, SW7 2AZ, United Kingd
³ARC Centre of Excellence for Paversity of Melbourne, 3010, Austr
⁴UC, Santa Cruz and UC, Santa C
⁵Antwerp University, B2610 Wilrij
⁶SISSA and INFN Sezione di Tries
⁷Fysiska institutionen, Lunds univ
⁸LPSC, Universite Grenoble-Alpes
⁹Department of Physics and Astron
USA

¹⁰Rudolf Peierls Centre for Theoret United Kingdom Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels

CERN-LPCC-2016-001

Andreas Albert, ^{1,*} Mihailo Backović, ² Antonio Boveia, ^{3,*} Oliver Buchmueller, ^{4,*} Giorgio Busoni, ^{5,*} Albert De Roeck, ^{6,7} Caterina Doglioni, ^{8,*} Tristan DuPree, ^{9,*} Malcolm Fairbairn, ^{10,*} Marie-Hélène Genest, ¹¹ Stefania Gori, ¹² Giuliano Gustavino, ¹³ Kristian Hahn, ^{14,*} Ulrich Haisch, ^{15,16,*} Philip C. Harris, ⁷ Dan Hayden, ¹⁷ Valerio Ippolito, ¹⁸ Isabelle John, ⁸ Felix Kahlhoefer, ^{19,*} Suchita Kulkarni, ²⁰ Greg Landsberg, ²¹ Steven Lowette, ²² Kentarou Mawatari, ¹¹ Antonio Riotto, ²³ William Shepherd, ²⁴ Tim M.P. Tait, ^{25,*} Emma Tolley, ³ Patrick Tunney, ^{10,*} Bryan Zaldivar, ^{26,*} Markus Zinser²⁴

*Edite

 $^{^1\}mathrm{III}.$ Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

 $^{^2{\}rm Center}$ for Cosmology, Particle Physics and Phenomenology - CP3, Universite Catholique de Louvain, Louvain-la-neuve, Belgium

³Ohio State University, 191 W. Woodruff Avenue Columbus, OH 43210

⁴High Energy Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2AZ, United Kingdom

⁵ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Uni-

Simplified Dark Matter models

Mono-mania @ the LHC...

- ... complemented by searches for "full", UV-complete models, such as
 - Supersymmetry
 - Kaluza-Klein extra dimensions
 - Little Higgs models
 - etc.
- ...and of course there are also other DM candidates but this talk will mainly focus on WIMPs

Mono-mania

- Search for jets with missing energy
 - Jets or boosted vector bosons (W,Z)
- Comparison of data with background prediction

 Main background from Z → vv + jets and W+jets production

- Interpretation in simplified DM models
- s-channel with different mediators

- Set limits on allowed masses and coupling strength (next slide)
- Further interpretations in
 - fermion portal models
 - coloured scalar mediator models
 - nonthermal dark matter model

- Interpretation in simplified DM models
- s-channel with different mediators

CMS EXO-16-048

Mono-photon

- Photon p_T > 150 GeV
- Veto events with more than 1 jet
- Require angular separation between photon and missing energy

<u>ATLAS:</u> <u>Eur. Phys. J. C 77 (2017) 393</u>

Weaker sensitivity compared to mono-jet ISR searches

But also EFTs with direct couplings to photons

Comparable CMS analysis: JHEP 10 (2017) 073

Mono-Z

- Search for dark matter candidates produced in association with a Z boson
- <u>ATLAS: PLB 776 (2017) 318</u>, arXiv:1708.09624

Higgs as a portal to Dark Matter

- Study of Higgs → invisible branching fraction in VBF, association with V and gluon fusion production modes.
- As Higgs couples proportionally to mass, making it a viable portal to DM
 - Only sensitive to DM masses < 0.5 m_H

 Additional searches for Higgs in conjunction with DM in bb and γγ final states (→ backup) Higgs production in association with $Z \rightarrow II$ CMS-EXO-16-052

- Combination of H → invisible production modes
- B(H → inv) < 0.24 @95%CL

CMS-HIG-16-016

DM in association with heavy flavours

DM in association with bottom or top quarks

VBF like signature, b-jet tagging

- Interpretation in colour-neutral tt/bb+φ scalar and tt/bb+a pseudoscalar models
- Not yet sensitive to bb + φ/a production
- Also searches with single top
 - CMS EXO-16-051

Similar sensitivity

Scalar

Mediator Searches

High-mass dijet resonances

Search for resonance in dijet invariant mass spectrum

Low-mass dijet resonances

- Low mass mediators are difficult to constrain because of huge QCD dijet background
 - difficult/impossible to cope with total event rate
- Possible ways out:
 - "Data scouting": perform analysis on dataset that contains reduced event information (trigger level), allowing to store data at very high rate
 - Trigger on high-pT ISR jet or photon and search for low mass resonance in recoil system
 - Trigger on high-pT ISR jet and search for merged, boosted resonance in recoil, using jet subtructure

ATLAS
Trigger Level
Analysis
ATLAS-CONF-2016-030

ATLAS
ISR search (photon)
ATLAS-CONF-2016-070

Low-mass dijets- boosted topology

Resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure.

- Soft drop mass for jets in different p_T ranges
- Peak from Ws and Zs clearly visible
- Sensitive to dijet resonances with masses as low as 50 GeV

CMS-EXO-17-001

Dilepton resonances (Z')

- $Z' \rightarrow e^+e^-$ and $Z' \rightarrow \mu^+\mu^-$ searches
 - Require high-p_T same flavour, opposite charge dilepton pair
 - Limits on Z' mass of around
 4 4.5 TeV

	Width [%]	$\theta_{E_6} \; [{ m rad}]$	Lower limits on $M_{Z'}$ [TeV]					
Model			ee		$\mu\mu$		$\ell\ell$	
			Obs	Exp	Obs	Exp	Obs	Exp
$Z'_{ m SSM}$	3.0	-	4.3	4.3	4.0	3.9	4.5	4.5
Z_{χ}'	1.2	0.50π	3.9	3.9	3.6	3.6	4.1	4.0
$Z_{ m S}^{ ilde{\prime}}$	1.2	0.63π	3.9	3.8	3.6	3.5	4.0	4.0
Z_I'	1.1	$0.71~\pi$	3.8	3.8	3.5	3.4	4.0	3.9
$Z_{ m X}^{\prime} \ Z_{ m S}^{\prime} \ Z_{ m I}^{\prime} \ Z_{ m N}^{\prime}$	0.6	$0.21~\pi$	3.7	3.7	3.4	3.3	3.9	3.8
$Z_{ m N}'$	0.6	$-0.08 \ \pi$	3.6	3.6	3.4	3.3	3.8	3.8
Z_{ψ}^{\prime}	0.5	0 π	3.6	3.6	3.3	3.2	3.8	3.7

 Can combine searches for DM signal (missing energy) and those for mediators to constrain allowed model parameter space

- Can combine searches for DM signal (missing energy) and those for mediators to constrain allowed model parameter space
- Exclusion strongly depends on choices for additional parameters, e.g., coupling to quarks but also leptons!

- Can combine searches for DM signal (missing energy) and those for mediators to constrain allowed model parameter space
- Exclusion strongly depends on choices for additional parameters, e.g., coupling to quarks but also leptons!

- Can combine searches for DM signal (missing energy) and those for mediators to constrain allowed model parameter space
- Exclusion strongly depends on choices for additional parameters, e.g., coupling to quarks but also leptons!

- Much weaker constraints on Scalar and Pseudo-Scalar mediators
- Exclusion only for very light DM and couplings $g_a = g_{DM} = 1$.

Comparison with Direct Detection

- Complementarity with Direct Detection clearly visible
- Sensitivity strongly depends on type of DM interaction
 - Can be used to learn about underlying physics in case one or the other sees a signal

Collider searches more powerful for small DM masses

Comparison with Direct Detection

- Constraints on B(H → inv) can be translated to limits in scattering cross section vs DM mass plane to compare with direct detection experiments.
- Sensitive to masses < 0.5 m_H
- very sensitive at low DM masses

Pros and Cons: Collider vs Direct Detection

Wimp – Nucleon Interaction

Spin-Independent (SI)

Spin-Dependent (SD)

Basic Mediators

Vector

Besides low DM masses
DD provides best sensitivity.
Complementarity at
low DM masses (<5 GeV)!

Scalar

Besides low DM masses
DD provides best sensitivity.
Complementarity at
low DM masses (<5 GeV)!

Axial-vector

DD and collider are equal in overall sensitivity but probe different regions of parameter space!

Complementarity in full parameter space!

Pseudoscalar

Effectively no limits from DD above a few GeV in M_{med} , Collider and ID probe region at larger M_{med} .

Complementarity in M_{med} !

from
O. Buchmueller

Outlook – Where next?

Henning Flaecher • DM UK Meeting • Bristol • 17th Jan 2018

Dark Photon search @ LHCb

- Assume a dark sector, a collection of particles that are not charged directly under the SM strong, weak, or electromagnetic forces.
- Dark photon, A', whose coupling to the electromagnetic current is suppressed relative to that of the ordinary photon, γ, by a factor of ε
- Dark Photon would also couple to DM
- Search for Dark Photon decay to dimuon pair in meson decays

Summary

- Comprehensive search programme for dark matter is underway at LHC
- So far focused on WIMP signatures
 - Guidance from simplified Dark Matter models
 - Search strategy includes searching for DM production but also for mediators that couple to both SM and DM
- Long-lived signatures to be added to search portfolio
- Extend searches beyond WIMP signatures

- DM searches @ LHC a powerful tool
 - In particular sensitivity to small DM masses
 - Sensitivity strongly depends on assumptions made for DM interaction, spin structure of mediator and coupling strength
 - In many ways complementary to direct detection searches
 - This could be crucial for understanding the underlying physics in case of a signal from either approach

Backup

- Interpretation in simplified DM models
- Fermion portal models

- Interpretation in simplified DM models
- Coloured scalar mediator models

DM in association with heavy flavours

- Interpretation in colourneutral tf/bb̄+φ scalar and tf/bb̄+a pseudoscalar models
 - Fixed DM mass
 - Limit as fcn of mediator mass
 - Fixed mediator mass
 - Limit as fcn of DM mass
- Not yet sensitive to bb + φ/a production

200

m(χ) [GeV]

100

3 4 5 6

20 30

200

m(χ) [GeV]

100

DM in association with heavy flavours

colour-charged scalar mediators (b-FDM)

Mono-Higgs

Higgs production in conjunction with DM

CMS-PAS-EXO-16-054

Higgs production in conjunction with DM

Higgs decay to bb

Phys. Rev. Lett. 119 (2017) 181804

High-mass dijet resonances

 Search for resonance in dijet invariant mass spectrum

DM mediator would show up here

- "bump hunt" not effective for very wide resonances
- Investigate di-jet scattering angle in this case

Comparison with Direct Detection

- Complementarity with Direct Detection clearly visible
- Sensitivity strongly depends on type of DM interaction
 - Can be used to learn about underlying physics in case one or the other sees a signal
- Collider searches more powerful for small DM masses

