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GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

Following GW150914: To date 90 binary mergers detected by LIGO-Virgo-
Karga Collaboration




GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

 Measurements of binary 
parameters: Masses, Spins, 
Distance 
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Figure 7. Marginal posterior distributions for the source chirp mass M, mass ratio q, e↵ective inspiral spin �e↵ , e↵ective
precession spin �p and luminosity distance DL for O3b candidates with pastro > 0.5 plus GW200105 162426. The vertical
extent of each colored region is proportional to one-dimensional marginal posterior distribution at a given parameter value
for the corresponding event. We highlight with italics GW200105 162426 as it has pastro < 0.5, as well as GW191219 163120
because of potential uncertainties in its pastro and because it has significant posterior support outside of mass ratios where the
waveform models have been calibrated. Results for GW200308 173609 and GW200322 091133 include a prior-dominated mode
at large distances and high masses: the hatched posterior probability distribution shown on the lower half of the plots for these
candidates exclude these low-likelihood, prior-dominated modes. Colors correspond to the date of observation.
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Binary mergers of 
black holes (BHs) and 
neutron stars (NS)

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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PHYSICS CASES

•Black hole formation & evolution

•Neutron star properties: Equation of state, 

strong interacting matter

•Multi-messenger astronomy

•New astrophysical sources of GW 

Astrophysics:

Fundamental physics: •Precision tests of (strong field) GR


•New physics signals? Modifications of GR, 
Higher curvature, Dark Matter…


AEI

•3rd generation of GW observatories (Einstein Telescope; Advanced 
LIGO, LISA) to start in 2030’s. 


•Highly increased sensitivity expected: Need for high precision 
theory predictions
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[Schwinger,Keldysh]

[Jakobsen,Mogull,JP,Steinhoff]

WORLD LINE QFT : FCUCTUATE GRAUTON & WORLDCINE
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WQFT OBSERVABLES : ONE - POINT FUNCTIONS
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② EMITTED WAVE FORM :
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[Jakobsen,Mogull,JP,Steinhoff]
PEITING SPIN ON THE WORLD LINE : llSUSYINTHESK-WITHGDlutousjmg.mn
Representspin with Grassmann- odd ✗

"

vecto-F-E-jna-iiuwuabty5-mfd-cft-9uvE.IT+ IFA + { Rabcdiiifbyiyrd] } validiert062)

The Spin tensor 5
= {
""

Poppao ( a" : PAULI - LUBANSKI VECZOR )

5=-2 :#
"

F] } {FIT}_ .

= - in
""

( 1ˢ -torderformalism)

⇒ {5, SPO } p.ir . = nur50-inTSP-n~P50-nuo.JP
F-ZSUSY impliesfourconservedsupercharges :

P2 , ftp.T, T.FSE-mfd-LCEEabFMF.tn
~ im

energy ⇒ sscpusuir-OT.inLelength finite - Size Convention

Classical EOMS ⇒ Mathieson - Papapetrou - Dixon eq⇒ @ OG)



Spinning WQFT Feynman vieles

Gvavitohpropagator worldliieflactuationpropago.tw :
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Spinning Waveform [Jakobsen
,
GM
,
Plefha

,Steinhoff
'

21 ]

sumondiagramswithanoutgoinggrav.tn . Integration internat Lines :
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- • - - - . _ - -0--00 - - - -0--400 - " -

-055h
-

<huvlh)> =

"Äh + ant } + } ↳ n + }7)
• -
- _ .
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i.m-IE-E-o-i-weobtainfhet.me
-domain

waveform for Large lx-t-r.TK :S Ms?
requiresintegrating on the outgoing energy :
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"

, p
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:( I.E) point 4.x --dpi
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u-ct-r-retaudedt.me

Two Components : +/✗ polarisations .
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[Kovacs,Thorne `75]Integratedwaveform-f.is/-computedbs in 4 long Papers !

FI --4:/it:(äüE +

oiifi.EE#..7-E=E--.b-.E...!..T
Performing there integrals gehts time - domain Wandern : VIDEO

E-i-E.in#-b-E-(Hr.I-)+2sYa;-fao+NALEg+aazIBis ]!:

Wave memory

f-
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(u : -1N) - f-
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HST (g.4) 2
t 1<-32

M , Mz

✗ '- Viva b :b , - b , g :( 1
, E)

E : polerizctun

Non-spinning



[Jakobsen,Mogull,JP,Steinhoff] [Jakobsen,Mogull][Mogull,JP,Steinhoff]

[Källin,Porto][Bern et al][Brandhuber et al][Bjerrum-
Bohr er al]

Deflections-Grophsuithsiugleoutgoiuysp.ie
= - miw2LZ.TW)>war /⇐ ◦ } World eine autotür Zi
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e- - _ -80-0- - - •_ - •- - - - -

↓ - - - -

TREE - LEVEL GRAPHS

(-4--0)Integration gives ( uno spin)

spie-G.mg?b-(2I-Fi-3I-lsY-#-G(mEY-)- 063) 8=4 .ve

1PM 2PM 3PM

AGREES WITH WEFT & AMPLITUDE APPROACHES



Conservative 3PM 5 [GM , Jakobsen
'

22 ]
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[Jakobsen,Mogull,Plefka,Steinhoff]

[Jakobsen,Mogull,Plefka,Steinhoff]

[Jakobsen,Mogull]

[unpublished with Sauer]

[unpublished with Sauer]

[Shi,Plefka]

[Bastianelli,Comberiati,de la Cruz]

[Mougiakos,Riva,Vernizzi]

[unpublished]

STATE - OF - THE -ART 'N WQET

☐ REFLECTION & SPIN KICK UP TO SPIN
?
:

1PM & 2PM

3PM (CONSERVATIVE) WITH RADIATION REACTWN

☐ WAVE FORM @ LO WITH UP TO SPIN
?

WITH LEADING TIDAL EFFECTS

B DEFCECTION WITH CEADIVG TIDAL EEEESTS @ 3PM

☐ DOUBLE COPK STRUCTURE

☐ LIGHT - BENDING



INTEGRATION TECHNOLOGY @ 3PM & BEYOND

☐ BOTTLENECK IS NOT GENERATION OF INTEGRANDS

☐ ALL INTEGRALS WITH RETARDEB PROPAGATODS

☐ IMPORT HIGH - ENERGY PHYSICS TECHNOLOGY :

① INTEGRATION - BY - PARTS REDUCTIOER TO MASTER INTEGRALS

(WITH REDUCED SYUUETR ' ES !)

② BIFF
.
EQUAT con TECHN / GG E TO INTEGNATE MASTERS

③ BOUNDARY CONDITIONS ( STATIC LCVIT ) [ IE RELEVANT]

→ SAUE SET OF MASTERS WITH SPIN & TCDACS @ 3PM

→ SCALES WELL FOR HIGHER - Loop PM ORDENS



INTEGRATION TECHNOLOGY @ 3PM

3PM DEFCECTION ,
ONLY RETARDEDPROPAGATORS ARIE :

4+{3++57} + :{üiü.GE . . .spie =
- ÷ - - • • -

÷: %:
- .

_
•

→
• . - -•_ - #• - - - @↑

INTEGRAL FAMCCY :
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"" (e)"He
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-g)2)
"(Eerq))

">
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octivewohdhiepnp . active grouitapropogaks .

d

INTEGRALS ARE (PSEUDO) - REAL IN PHYSICAL ✗ = G.v2 REGION

e-

In .in, . . . , nz
= C- 1)

""" In
.in, .

. . .my } When 1<841

Kontrast with Feynman integrals, real for -1482£ .



Performing Retarded Integrals
USE STATE - OE - THE - ART INTEGRATION TECHNOLOGY :

IBP , DIFF . EQUATIONS
& METHOD OF REGIONS ADAPTED To RETARDED PROPAGAIODS!

zcoisoisos) cfflivzfllz.ir,)
"Münz es/leichter :{Meinten :E)" (Chillig>4iEGSgnki.ie?-qY)4lei)%feiYYEe,-qY)%e2-g)YY-
8- '"(w) i i

C- 1) " n !
=

(wt ; E) ne
_

(w. :{ gn
. , } treat d-G) asapropagatov from

perspective of 18ps

[ { RELEVANT FOR SYMMETRCES IN IBP REDUCTION
. HERE : 3 FAMILIES

[
(+++)
[

C-- t )
[
(t - t )

hihi. . 47 hinz ' ' - V7 Hinz . - - 47

System of DES in ✗= 8-Ä take Canonical form :

dt
☒

= { (E- +1+7--1%-13 } 2--3%-9^+062)



Method of Regions
Fix boundary conditions to Leonding oder in the Static limit V90 .
Behavior Character :Zed by one grauton :

kpot = ( KIT ) ~ (V, 1)
"%. .in≥

= 24029>pot
hin , . - in>

+ [
90203)rad

Krach = (KIT) ~ (V, v )
I
"""

nmz. - - nz

Expandintegrandinv, assumingallotherloopmomentaaue potential .
Reduceto simpler integrals with manifest dependance on 8--4 - V25"

.

(8) pot G- (live) £62.4 )[
""2- " "7
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Tidal effects - work with Benjamin Sauer

Considera simple extension to the non- Spinning theory
:

spptstidal-mfd-cf-l-zguvEE-CEEuv-T-cozbu.TN]
Eier = Rumi

,
Bier = REMIX

,
Hauß -_ { Evßpo Ruft

Gives rise to new hindsofvertces :
_ . . .
.ee#:.......E:
}} gg

4-2 } quoduupole(B2 Love no 's

- - -9- - . - - . - - -

We begin with the waveforcm , {hmconsists of Zdiagvams :
{ h) =

- - -
_ . .

+
. _

§•Eʰ
Lach ofdiagramswithapropagatingwovldl.me mode ⇒ vanishing Wave

memory
ldftidai (E) i-ftidai.lt -- to, E) - ftidag.lt-o, E) = 063)

⇒ 3rad - prod - 063 ) ⇒ 0rad
, tidal ~ OCG

")



Tidal effects (z )

To Compute Api , Sim : Lau diagracns to Spinning cakulat :on :

Final resulttahesaconeE-F.fm#ms "
b
"

Spions = posen Ocons%,
+ (Cos Ours - 1)MEI [WarmDvi- Hm>+ m)Vi]

spiiraa-posinoradbj-s-PTEY-lvi-ov.ie)
F-
real integrals TÄTE

Confirmed : 0rad = 0
,
Onions has fin : te high- energy 8→ • limit

Price
agvees with vesult from squaring Wave form( PN expansion )



SUNLMARY

☐ LUQFT HIGHLY EFEICIENT FOR CLASSICAL SCATTERINC :

• FOCUS ON OBSERUABLES BY
"

QUANTLZING "

WORLD LINE D.O - F .

o ONLY COMPUTE TREE - DIAGRAMS (NO "

SUPER -

CLASSICAL
"

CONTRIBUTIONS )

° ALL PDOPAGA>ORJ RETARDED : NO
"
SPECIAL"

TREATMENTS OF CONSERVATIVE & RADIAICOW - REACTED

CONTRIBUTIONS

☐ SPIN CARRIER BY GRASSMANN VELTORS ON THE

WORLDLIVE (äle STRING THEORY )



OUTLOOK

☐ RELATION TO SELF - FORCE APPROACH ?

☐ BOUND ORBITS ?

☐ HIGHER ORDERS 'N SPIN ?

☐ GBSERUABCES @ 4PM ?

THANK You !


