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General Relativity

Einstein’s theory presents us with a
beautiful theory for gravity. Many exciting
guestions to study:

Extreme gravity
Quantum extensions

Geometrical description <-> EFT-
QFT (flat space) formulation

Higher derivative bounds
Graviton properties/mass etc
Cosmological models

Equivalence principle and quantum
physics

Extra dimensions / SUSY
String theory....
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New data - new window

First direct observation of a binary merger
of black holes

Direct access to gravitational interactions
in the most extreme regimes

~ LIGO Hanford
e Possibility of complimenting conventional

analysis.

N
n
P
v
c
v
3
o
v
P
[N

e A current need for theory to catch up to LIGO Livingston
match observational progress & precision . | 07

Time (sec) |

eMany Interesting questions to study:
Validity of GR/ gravity phenomenology/
new theories?

Amplitudes methods allow refined computation and increased precision!
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Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables
are extracted from QFT methods.

Surprise: Classical physics from a relativistic
guantized theory of gravitons seems more efficient
than directly solving Einstein's field equations!

One key question: Can we formulate a precise extraction of classical gravitational

physics from on-shell amplitudes”? (with least amount of work) . = Saper

-> Potential: discovery of new physics

-> Faster and more accurate theoretical breakdown of

gravitational wave events!
1970 2022
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Known since the 1960ties that a particle version of General Relativity
can be derived from the Einstein Hilbert Lagrangian (Feynman, DeWitt)

Expand Einstein-Hilbert Lagrangian :

8 =M, +khy,

Derive vertices as In a particle theory - compute amplitudes as
Feynman diagrams! (GW Kovacs and Thorne 1977)

Off-shell QFT methods: not very computationally efficient!
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@ Feynman’s method not flawless
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@ Scalar field theory : constant vertex (-1 term)

@ Gluons : momentum dependent vertex (-3 terms)
@ Gravitons : momentum dependent vertex (~100 terms)
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Quantum gravity? An effective field theory

A modern viewpoint (Weinberg) to view the quantization of
general relativity from the viewpoint of effective field theory

R

°CZEH — V —8 [ 167TGN T gmatter:|

2R -gravity EFT -matter
— o 2 2
geffGR— _g|:167[GN+R +Rﬂy+...+gmatter+...:|

Consistent quantum gravity at low energies long-distance contributions
at one-loop (Donoghue; NEJBB, Donoghue, Holstein)
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Advantages: Gravity as an EFT

Treating general relativity as an effective field theory avoid
complications and confusions in quantising gravity -

Natural generalisation of Einstein’s theory
ldeal perturbative setup for QFT analysis of black hole binary mergers
Universal consequences of underlying fundamental theory

Direct connection to low energy phenomenology of string and super-
gravity theories

Classical GR has a huge validity for normal energies
GR-EFT is attractive for investigating quantum aspects
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Gravity from quantum field theory

e We start with Einstein-Hilbert term

R
S = |d* A/ + oM'T
[ * g[16ﬂ'G 5 /’w]

* where the minimal ‘energy-momentum’ tensor is

_ M > 2
1, = 0,p0,up — > [é)“co(')a(ﬂ — m-Q ]

» Consider the 2 -> 2 process from path integral

01(P1.my) + @o(pyymy) = (P}, my) + Po(Dyy M) XM -
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Classical gravitational scattering
from quantum field theory

* We use the language of old-fashioned time-ordered perturbation theory

* |n particular we eliminate by hand
* Annihilation channels
* Back-tracking diagrams (no intermediate multiparticle states)
* Anti-particle intermediate states

We will also assume (classical) long-distance scattering (this has the
consequence that we can focus on non-analytic contributions -> ideal for unitarity)

(NEJBB, Donoghue, Holstein; Cristofoli, NEJBB, Damgaard, Vanhove)
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Classical potential from a Lippmann-
Schwinger equation

 Non-relativistic limit, the tree
classical potential is simply equal to
the amplitude after a Fourier

transform:
d°q i d°q iy -
V(r,p) = / (zﬂ)ge" V(p,q) = / (QW);,B" M(p,q).

* Extension is given by Lippmann
Schwinger eq. |
y / d’k V(p, k)M(k,p')
(27()3 Ep — B + 1€

M(p,p") = V(p,p') +
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P 2
2
g 2rmIm3Gy (272 — 1
MO(’Y,QQ,h) _ >V\\A4N/\\< _ K Ty, N( Y ) 4 O(ﬁo)
P1 P2

q|°

Newton’s law through Fourier transform

Gmm
V(i) = — ——=
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Computations: Loop level

Long range behaviour can be efficiently be captured from the evaluation of
unitarity cuts for using on-shell tree amplitudes

KLT+on-shell input trees
(e.g. Badger et al., Forde,
Kosower) recycled from
Yang-Mills -> gravity

In D-dimensions from CHY
(NEJBB, Cristofoli,
Damgaard, Gomez;

(Neill, Rothstein; NEJBB, Donoghue, Vanhove) ~ EJ55, Plante, Vanhove)
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o Surprise: Non-linear (classical) corrections from loop diagrams!
» Can consider the various exchanges

1 A A dh

* Define transfer momentum, CM energy
‘ ‘ P1 P2
2 2

q = (pl o p,l) i M1 Mo

gé;\.f - (pl T P2)2 = (p'l == p;)2 — 7TL:12 + TTL% + QTTLITYLQ’Y
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Classical gravitational scattering
from quantum field theory

/
D1, M1, 1 Py, M1, S1

/
Do, Mo, 99 Do, Mo, S9

e Classical limit: we keep wave number fixed and take Planck’s constant to
zero, leads to the following Laurant expansion (quantum / classical /
superclassical terms)

MV (y, ¢ MV (v, ¢
ML(’Yan:ﬁ) — - L(E.—D)-].z e L’ ( '—) } O(ho) 1/h’
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N2 2 g2 s
Expansion of massive propagators (£ T P1)7 —mi = {7 +26- py = 2mi Lo

1 / d*/ | |
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Origin: classical pieces in loops

SN2 2 P2 o
Expansion of massive propagators (£ 4 p1)* —mi = {7 + 20 p1 >~ 2my by

1 / d*¢ 1 1
2my ) (2m)4 0% 4+ ie (L 4 q)* +

Close contour (NEJBB, Damgaard, Festuccia,
Plante, Vanhove)

/ A0 i 1 1 !
Tlem (2m)% 4m 02 (7 4 ¢)2 32m|{]
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Four-point amplitude can be deduced to take the form
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One-loop result for gravity

Four-point amplitude can be deduced to take the form

M ~ (4 + qu T oo s T 0'54—,2 + ,131&4 ]n(—q2) + ;32&.4 = 1 ces

q
ol N

N4 Long range behaviour

(NEJBB, Donoghue,

Short range behaviour Holstein; NEJBB,
Donoghue, Vanhove)
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One-loop result for gravity

The result for the amplitude (in coordinate space) after summing all
diagrams in (leading in small momentum transfer contribution):

Gmimso [1 N 30(771.1 +mg) 41 Gh] (NEJB,

- + — Donoghue,
' 107 Holstein)
Classical Quantum

,71

Post-Newtonian term in complete accordance with general relativity

(lwasaki; Holstein and Ross; Neill and Rothstein; NEJBB, Damgaard,
Festuccia, Plante, Vanhove)
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Einstein-Infeld-Hoffman Potential

Solve for potential in non-relativistic limit (Born subtraction)

i(fIT)i) = —2mié(E —E')
~ (fVes(a)|n) (n|Vis(a) i)
|ty + 3 SRR R
(FIVu(Q)]i) — Gmims |+ 3G(m.1 + ma)
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Einstein-Infeld-Hoffman Potential

Solve for potential in non-relativistic limit (Born subtraction)

i fITi) = —2mié(E —E")
, - . (f|Vas(Q)|n) (n|Vis(aq)li) -
X [(f\Vbs(Cl)|'l> + zﬂ: & E_E o+ ':,’6 + ...
V@) = —Gmm [y 5 Glm +mo

Contact with the Einstein-Infeld-Hoffmann Hamiltonian

Vbs('r) =V (r) + 7Gmima(my + ma)

20272
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Post-Newtonian interaction potentials

P1 ﬁf)i ﬁll ﬁ}i

2my 21 8771.:13 8ms;

Gmima( G*mima(mi + mo)
r 2r?
02 o - = . .
~ Gmymy [ 3p] N 3ps  Tp1-Pas  (p1-7)(Ps-T)
2r mi = m3 M1 MmMo mymeor?

(Einstein-Infeld-Hoffmann, Iwasaki; NEJBB, Donoghue, Holstein; Holstein,
Ross) Crucial subtraction of Born term in order to the correct PN potential



Post-Newtonian interaction potentials

9 9 1 1
Y 4 Pj P P4
H = + 2
2my 21 8my  8m;
Gmima( G*mima(mi + mo)
r 2r?
0 42 042 — — - -
~ Gmymy [ 3p] N 3ps  Tp1-Pas  (p1-7)(Ps-T)
2r mi = m3 1M1 1M mymar?

(Einstein-Infeld-Hoffmann, Iwasaki; NEJBB, Donoghue, Holstein; Holstein,
Ross) Crucial subtraction of Born term in order to the correct PN potential
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Post-Minkowskian framework and amplitudes
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Post-Minkowskian framework and amplitudes

Post-Minkowskian expansion of Einstein’s general theory of relativity has received much
recent attention in the amplitude community

ldea: use scattering amplitude to provide a self-contained framework for deriving the two-
body scattering valid in all regimes of energy and employ the computational power of
modern amplitude calculations in an expansion in G (Damour)
* On-shell Integrand construction
* Multi-loop integration
* |BP relation reduction (various programs)

* Modern integration techniques ..

* Integration regions .. PDE approaches

Main focus on the two-body problem in general relativity without spin

NB: Many other problems can be considered in this framework
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Classical potential from a Lippmann-
Schwinger equation

* Problem in scattering theory to  The Hamiltonian H for the two
relate a scattering loop amplitude massive scalars is given by
M to an interaction potential V. Salpeter eq.

* |In PN we consider non-relativistic ‘
quantum mechanics, and this can H = \/ p‘l 4 mf 1

be generalized to the relativistic

case.
\/ p* +m; + V(r, p)

* \We restrict classical objects that
scatter to classical distance scales.
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Result for the one-loop
amplitude

The amplitude has a
Laurent expansion

L (M70hg) MV 0n0)
Mi(v,4%, h) = 4D ( : R : P M (v, ¢*) + O(h)

M(z( ):M1(2)(7aQ)
MV, ) = MUV (, ) + METV(y, ) + MV (y, @),
MP (v, @) = M7V (v, ¢?) + M7y, )+MT(°)(%QQ) + MO (v, ¢%)

Order by order in Planck’s constant
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PM potential one-loop amplitude
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lgnore quantum keep only classical pieces
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Putting It all together

lgnore quantum keep only classical pieces

phase
11672 G
EaEb
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Relation to a PM potential

One-loop amplitude after summing all contributions

Ml—loop _

m, My

EZ¢ 12|q] Ey |p m|q|?

(NEJBB, Cristofol,
Damgaard, Vanhove) Imaginary

| | super-classical/singular ..
How to relate to a classical potential

* Choice of coordinates
* Born subtraction/Lippmann-Schwinger
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Born subtraction important to make contact with classical physics
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One-loop

Born subtraction important to make contact with classical physics
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Again same result as from matching, singular term gone!
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Scalar interaction potentials
(one-loop)

Important ‘empirical’ observation classical part of radial action that for
the gravitational Hamiltonian is given by triangle diagrams only rest Is
cancelled in subtractions One-loop level

o I

_i(87C )2<C(7721 mo )l (p1,q) c(mao,mq)ls(pa. —q)
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Result for the one-loop
amplitude

It follows that the classical part is

37TG]2V(m1 -T- mz)m1m2(572 — ].)
4b+/~% — 1h

With quantum correction (important in iterations)

M (v, b, h) = (7b%e7)* P 4 O(4 — D)
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L essons from one-loop

* Only part of the amplitude is relevant for deriving observables
in General Relativity

. Part of the amplitude is there to be subtracted for
consistency with matching with a Quantum-Mechanical
potential

We will now consider what happens at two-loops
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Classical gravitational scattering:
Loop level

* 1) compute multi-loop cuts and 2) use consistency of the representation
IN master integrals to generate the full non-analytics pieces of the
amplitude (classical and super-classical contributions)

Extraction of integrand similar to QCD
Spinor-helicity and D-dimension
covariant tree
amplltudes can be used In cuts

ZML /q M%il(/:Q):
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Example: Einstein gravity at two-loop order

P | P
MQ 7/ b R ‘,\,!
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Einstein gravity at two-loop order

Can e.g. use helicity formalism
to derive D=4 integrand — from traces..
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Einstein gravity at two-loop order

Can e.g. use helicity formalism
to derive D=4 integrand — from traces..
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New Integrals
Mg-cut(O’ q‘Z) — M

We use unitarity cut to fix coefficients in front of
master-integrals. The full result can be written
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Einstein gravity at two-loop order

New Integrals
Mg-cut(O’ q‘Z) — M

We use unitarity cut to fix coefficients in front of
master-integrals. The full result can be written

Ms(v,¢%) = M5 (v, ¢%) + M5°(7, ¢%)
Where the SE contribution iIs

|
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+ M5+ M5+ M+ MY+ My + M

1V p/ P2
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Einstein gravity at two-loop order

New Integrals
M5~ (0,q%) = My~ + M3~ + My” + M3* + M3 + M5 + M;3°

We use unitarity cut to fix coefficients in front of
master-integrals. The full result can be written

Ms(7y, ¢?) = M5 (v, ¢*) + M5%(7, ¢°)

Where the SE contribution is |

1V | | p/ Do

Mzelf—energ}’(,y, Qz) — —4(167TGN)3’ Z(ng; + Jgg) + (m1 < mg) Pk//ﬂz
1=1
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Einstein gravity at two-loop order
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Einstein gravity at two-loop order
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Einstein gravity at two-loop order

Needed master integrals at two-loops for the conservative part of the
amplitude - determined by LiteRed/FIRE6/KIRA etc.
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Some examples of numerators

N(f) — 5127T3G?\,(mf11 m;‘ - Q(mf mg)s + 32)3 — 212W3G§’\,~m§mg(202 — 1)3.

0¥ i ) D 2137r3G?\, (96771?7713(202 — 1)3 + 8mfm§0(202 - 1)2(f@2(lg l3) + O((ﬁg")ﬂ)




Some examples of numerators

N = G -+ — (i + i) + o = 270G 2 — 1

NG = 2B313GS, (96mSmS (207 — 1) + 8mimia (202 — 1)%(hd)*(ls - Is) + O((hg)"))

N = 51203G3 (m? + m3 — 2(m? + m2)u + u?)® ‘
= 2U°mGYy (96mim5(20° — 1)° — 6myms0(20° — 1)*(hg)* + O((hg)"))




Some examples of numerators

NE%) = 5121°G (m] + ms, — 2(m3 +m35)s + s%)° = 2 n°Grymims(20° — 1)°

N(cross,s) & 213W3G:13V (96m€lim(2i(20.2 o 1)3 4 8m?mgo‘(202 o 1)2(@2(12 : 13) 4 O((hg")fl))

= 2Ur°GY (96mim5(20” — 1)° — 6mim30(20” — 1)*(hg)* + O((hd)*))

_ 187G},
3

Nu

(= 48(—am3mi((ls +15)* — (b +13)* + 40*) (i - )’
— 8my(p1 - l2)* + 16mymi0 (py - 1) (P2 - 1)
i (m3(—1 = 2 + 12 (1+ (I +13)?) — 200 + ) (1 + (b + b)?)
+40° + 4((lo + 13)* + (la + I3)* + (L + 13)> — 2(la + 13)*(ly + 13)* + (L + 13)4)02

— 404) + 4m§((l2 + 13)2 — (ll + 13)2 — 40’2)(]32 . 11)2 — 8(]32 . 11)4))(@4 + O((@S))



Einstein gravity at two-loop order

D) g2y _ 24T TGRmims (33(202 —1)°
2 ? s

3e|q|*h (0?2 — 1)?
2 imims(20% — 1) (1 —490% + 180* 60(20% —1)(60% —7) arccosh(a))
re(0? — 1)2 3 Vo2 —1

9(20% —1)(1 —50%)s 3
2(0-2 s 1) 55 §(m% 3 mg)(—l + 180’2) — m1m20(103 + 20.2)
12mymy(3 + 120% — 40*) arccosh(o)
Vo2 —1

6im,my(202 — 1)2 (4( | ))f d ((202— l)arccosh(a)) )

_'_

Tev o2 — 1 o2 —1 do vo2—1
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9(20% —1)(1 —50%)s 3
2(0-2 s 1) 55 §(m% 3 mg)(—l + 180’2) — m1m20(103 + 20.2)
12mymy(3 + 120% — 40*) arccosh(o)
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6im,my(202 — 1)2 (4( | ))f d ((202— l)arccosh(a)) )
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Tev o2 — 1 o2 —1 do vo2—1



Einstein gravity at two-loop order

D) g2y _ 24T TGRmims (33(202 —1)°
2 ? s

3e|q|*h (0?2 — 1)?
2 imims(20% — 1) (1 —490% + 180* 60(20% —1)(60% —7) arccosh(a))
re(0? — 1)2 3 Vo2 —1

9(20% —1)(1 —50%)s 3
2(0-2 s 1) 55 §(m% 3 mg)(—l + 180’2) — m1m20(103 + 20.2)
12mymy(3 + 120% — 40*) arccosh(o)
Vo2 —1

Imaginary 6im,mo (202 — 1) (4( —1 ))e d ((202 -~ l)arccosh(U)) )

_'_

Tev o2 — 1 o2 —1 do vo2—1
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1
M‘Z(Ua ‘QD o Iq‘4€

(M2 (0, lgl) + M (0, lg) + MS (0, |a)) + O(RY))



Gravity amplitude in powers of hbar

1 s » .
Malo, () = q|4e (Mg (0, lg]) + M5 (0, |a]) + M5 (o, Ig\)+0(h°))
M (o a]) = 8nGymima(20° — 1)°I'(—e) F(1+2€).

3h3|g|?(0? — 1)(4m) 2T (—3e)



Gravity amplitude in powers of hbar

1 -3 —92 —1
Mo(o,lal) = Tz (M50, lal) + M5 (0 la) + MET(0, lal) + O(1°) )
i  8nG3mimd(20% — 1)*T(—€)*T(1 + 2¢)
M 7o la) = - gmigper —Dam T3
M (o, [ql) = ST Gl + ma)mim§(20% — 1)(1 — 5o%)(dmee)> ) o

= eV o2 — 1h2|q|



Gravity amplitude in powers of hbar

1 o - .
M (o, q]) = 8nGymimy(20° — 1)°T'(—e)°T'(1 +2€)‘

3h3|q|*(0? — 1)(4m)=2(—3¢)

6im> Gy (my 4+ mo)mym;(20° — 1)(1 — 50°)(4me =)

M2 (o, q]) = Vo? —12lq] + O(")
MED (0, [q]) = 2 Gy (Ame™"E ) mim; (3(20‘2 —1)3
= he (0% —1)?
imyma(20° — 1) (1 —490% + 180*  20(7 — 2002 + 120*) arccosh(a))
re(o2 — 1)2 15 Vo2 —1

3(20° —1)(1-50%)s 1, , : , 1 2
202 — 1) 2(’ml ms5)(180° — 1) — §m1m20(103 + 20°)

-~ Amyma(3 + 1202 — 40*) arccosh (o)

Vvo?2—1

2imimo(20% — 1)° —1 ‘ 11~ d /(20° — 1) arccosh(o)
mevo? — 1 (4(02—1)) ( g da( vo2—1 )) '



Gravity amplitude in powers of hbar

1 i - .
Mao(0,lal) = 1z (M57(0: lal) + M50, lal) + M5 (2, la]) + O(R))
M (o, o 8rGymims(20° — 1)°T'(—e)°T'(1 +2€).

3h3|q|*(0? — 1)(4m)=2(—3¢)

612G (my + mo)mims(20% — 1)(1 — 502) (4meE)*

Ms (0, 1g]) = S g +0() Laurant expansion in
o oG (dme=e ) 2emImd [ 5(20% — 1)? | Plar)ck s constant.
2 (0 1dl) = e (Z 17 - imaginary contribution
~imymg(20° — 1) (1 —490% + 180*  20(7 — 2002 + 120*) arccosh((f)) cancelled by radiative
- me(0? — 1) 15 Vo2 -1 contributions

3(20° —1)(1-50%)s 1, , : , 1 ;
202 — 1) 2(m1 m3)(180° — 1) — §m1m20(103 + 20°)

~ 4dmymy(3 + 120° — 40*) arccosh(o)

Vo2 —1

2imimo(20% — 1)? —1 ‘ 11~ d /(20° — 1) arccosh(o)
Tevo2 — 1 (4(02—1)) ( g3 . da( vo?—1 )) |



Gravity amplitude in powers of hbar

1 i . .
Malo,1d) = T (M§ Y(0,1g]) + M5 (, |g]) + M5 (0, |g)) +(’)(h°))
M (o a]) = 8nGymims(20° — 1)°T'(—€)°I'(1 —I—Qe).

3h3|q|*(0? — 1)(4m)=2(—3¢)

612G (my + mo)mims(20% — 1)(1 — 502) (4meE)*

Ms (0, 1g]) = S g +0() Laurant expansion in
. oG (dme=e ) 2emImd [ 5(20% — 1)? | Plar)ck s constant.
Mz (0, ld]) = e (Z 17 - imaginary contribution
~imymg(20° — 1) (1 —490% + 180*  20(7 — 2002 + 120*) arccosh(a)) cancelled by radiative

me(0? — 1)2 15 Vo? —1 contributions

3(2022—(;2)(_1 1—) 50°)s ;(m% m2)(1802 — 1) — =mmao(103+ 2%  (Di Vecchia, Heissenberg,

5 . Russo, Veneziano)
~ 4dmymy(3 + 120° — 40*) arccosh(o)

| Vo2 —1

2imimo(20% — 1)? ( —1 )5( 11 d ((202—1)arccosh(a)))
7!'6\/0'2—1 4(0’2—1) 3 l do \/0'2—1 .



Gravity amplitude in powers of hbar

1 3 9 1
Ma(o,ld) = - (M2 (0, 1g]) + MS(0,1g]) + MSV (0, 1)) + O(K)
M5 (a,]q)) = SWG’ggll;n'f(ff _—1)1(21:)(_;?(1:%16; = (Bern et al, Parra-Martinez et al)

612G (my + mo)mims(20% — 1)(1 — 50%)(4dmeE)*

Ms (0, 1g]) = S g +0() Laurant expansion in
. oG (dme=e ) 2emImd [ 5(20% — 1)? | Plar)ck s constant.
Mz (0, ld]) = e (Z 17 - imaginary contribution
~imymg(20° — 1) (1 —490% + 180*  20(7 — 2002 + 120*) arccosh(a)) cancelled by radiative

me(0? — 1)2 15 Vo? —1 contributions

3(20” 2—(012)(_1 1—) 50°)s ;(m% m2)(1802 — 1) — 2mymao(103+ 20?)  (Di Vecchia, Heissenberg,

5 , Russo, Veneziano)
~ 4dmymy(3 + 120° — 40*) arccosh(o)

| Vo2 —1

2imima(20° — 1)? ( —1 )e( 11 d ((202—1)arccosh(a)))
71'6\/0’2—1 4(0’2—1) 3 ' do \/0'2—1 .
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Gravity amplitude in b-space

2\ 0, e 4Ecmp R D2 (Qﬂ_)D_uz 2 pl,prvpl:p‘Z e



Gravity amplitude in b-space

Mv( b) = : / dD—QgM( / ,/)iq'.B
o vl ol s AE, ,, P Jpp-2 (2m)P—2 il ot b

o e g 2 -
Ma(o,b) = —= (M " (0,)) + MG (0,b) (M (0,b) + M" (0, b))

G
+ MS(a,b) + O(R).



Gravity amplitude in b-space

Maoh) = 75— | . ,)eT?
2(0, 1E, P Jop_2 (2m)D2 2(p1, P2, P, Pa)e™

WMia(0,8) = —2 (M570(0,0) "+ il5 ™ (0,6) (M5 (0, b) + M (00))
+ MS*(a,b) + O(R°).

3

— (M @)

M7 (0, b

N T

)=

M;"(0,b) = zMé V(0. 0)M; " (0,b),

M5 D(0,8) + M5 (0,b) = iM ™ (0,) (M (0,0) + MV (0, 1)
s
)

M7V (6, b) = iMTV (0, ))MTO (0, b) + MEE - (a, b),

M0 (0,0) + M5V (0,0) = iMGV(0,8) (M (0,0) + M;O(0,1)
+ ML (0,b) + M (0, b),

M5V (0,b) = iMG (0, b) M3 (0,b) + M5° “(0,b),




Gravity amplitude in b-space

Mo(o,5) = 5 | e 5% )eid?
2 Ua 4EcmP R D3 (27_‘_)0 9 2 pl pQ pl p? S

G [ e 3 - = s
Ms(o,b) = —= (Mg 1)(0, b)) + 2M( (a, b) (M?l‘(a, b) + M?t‘(a, b))
+ MS"(0,b) + O(RO).

(-3) R Y dv D) . L .
ke T (L) bt (MO e b)) ’ Again iterative
./f\\/l/; (_2)(0, b) = iﬂo_l)(a, b)ﬁlj(_l)(a, b). structure like
MICD (6 1) + M (0. b) = iME (0, b) ( MV (6. 5) + MV (o, b)) one-loo.p, part
M. (_1)(0 b) = iﬂ(_l)(a b)ﬂj(o)(a b) + MBC (0,b) of'a blgger
e G s i - ,L(O) j(o) ’ scheme..Seen
My (o,b) + My T (o,b) =M (0o,b) (Ml (o,b) + M (o, b)) after Fourier
+ M (0,b) + M (0, b), transform to b

M5° " (0,0) = iMg " (0, ) M3 (0,b) + M5° ©(0,b), space
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Scattering angle from amplitudes

1+ ZZ .Aﬂjl’.L(a, b) = (1 + 2iA(o,b)) exp (% Zc&(a, b))

L>0 - L>0

Gravity eikonal

Gl\r'7711'772.2(202 —1)

Ievo? — 1

(50(0" b) — — (mb*eE)E + O(€),




Scattering angle from amplitudes

1+ iZHL(U, b) = (1+ 2iA(0, b)) exp (%Z(SL(U, b))

L>0 L=0

Gravity eikonal

Gnmima(20° — 1)

2ev/o? — 1
37rG?\r(m1 + 7’77,2)77117712(502 — 1)
8bv/o? — 1

50(0', b) — — (ngeq'g)e + O(e),

51 (Ja b) =

(TerG')'E)Qe



Scattering angle from amplitudes

1+ iz MVL(U, b) = (1+ 2iA(0, b)) exp (% ZJL(U, b))
L>0 ' L>0

Gravity eikonal 2A; = M (0, b)

- Grmima(mh*e’e)3€ [ 25(120* — 1002 + 1)
02(0? b) = sz\/a';z —1 o2 —1
T P
4mlm20(25 + 140?) - dmyme(3 + 120° — 40" ) arccosh(o)
3 vo?—1

- 2mymy(20° — 1) 1 11 d /(20° — 1) arccosh(o)
| Vo? —1 (4(02—1))6( 3 +%( Vo? —1 )))
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Scattering angle from amplitudes

sin (%) bt Vs 002(0, b)

3PM mimovo?2 —1  Ob




Scattering angle from amplitudes

sin [ = S B
2/ |apm 77117712\/0'2 — | ob

S 2 _
o m1m2\/§ 1bcos (%)




Scattering angle from amplitudes

. (X) l i Vs 0dy(a,b)
M\ ) lspum mimeovo2 —1 Ob
5

g SR L (&)

NE 2
: - QGlemQ(QO'Q — 1)
X1PM = Vo2 -1 ;

. IG5 mims(my + my)(50% — 1)
OPM = 1723
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2G5 mims (640° — 1200* + 6002 — 5)
3J3 (0% — 1)%

X3PM —

" 8G3mimayo? — 1 o(—25 — 140%) 4 3(3 + 1202 — 40*) arccosh(o)
3J3s Vo2 —1



Scattering angle from amplitudes

2G5 mims (640° — 1200* + 6002 — 5)
3J3 (02 — 1)2
8G3mima/o? —1

2\
+ 3]3 ( (—25—140') |

X3PM —

3(3 + 1202 — 40*) arccosh (o)
Vo2 —1

Rad. _ AGxymim5(20° — 1) 1 11 4 ((20 — 1) arccosh(a ))
X3PM = T3¢ (4(02 — 1)) 3 ' do vo?—1



Scattering angle from amplitudes

2G5 mim; (640° — 1200* + 6002 — 5)
3J3 (0% — 1)?

. 8Gmimav/ o2 — 1 o(—25 — 140?) 1 3(3 + 120° — 40*) arccosh(o)
3.J3s | Vo? —1

X3PM =

Raa, _ AGRmMim3(20° — 1) 1 11 d ((202 —1)ar0005h(0))
X3pM = T3¢ (4(02 — 1)) 3 do Vo2 —1

Match with expectations
(Damour; Di Vecchia et al; Hermann et al)



Scattering angle from amplitudes

2G5 mims; (640° — 1200* + 600% — 5)
3J3 (02 — 1)2

" 8Grmimyvo? —1 o(—25 — 140%) 4 3(3 + 120% — 40*) arccosh(o)
3J3s ' VoZ—1

X3PM =

Raa.  AGymim3(20° — 1) 1 11 . d ((202 —1) arccosh(o))
X3PM = T35 (42 —1))¥\ 3 " do /o2 — 1
Match with expectations
(Damour; Di Vecchia et al; Hermann et al) (N EJB,
Damgaard,
Plante,

Vanhove)



Scattering angle from amplitudes

2G5 mims; (640° — 1200* + 600% — 5)
3J3 (02 — 1)-—

" 8G3mima/o? —1 o(—25 — 140%) 4 3(3 + 1202 — 40*) arccosh (o)
3J3s Vo2 —1

X3PM =

Rt o AGHmim3(20% — 1)° 1 ( 11 d ((20 o l)arccosh(a)))

X3PM = T35 Q02 —1)\ 3 " do Jo? —1
Match with expectations
(Damour; Di Vecchia et al; Hermann et al) (N EJB,
What is nice to see is the fact that everything matches up! DaPrIna?]atzrd,

- the cancellation of terms that is demonstrated explicitly gives
important consistency of computations. Vanhove)
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An example of this is the ‘velocity cuts’ is a clever to organise the
integrand for simpler computations. The basic observation is that
the combination of linear propagators

( 1 1 ) y
(Pa - latic)(pa-Lp—ic) (pa-flp+ic)(pa-La—i€)
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Even simpler organisation of results — velocity
cuts, exponentiation and soft expansion

An example of this is the ‘velocity cuts’ is a clever to organise the
integrand for simpler computations. The basic observation is that
the combination of linear propagators

( 1 1 ) y
(P4 - batie)(pa-lp—ic) (pa-lp+ic)(pa-La—ic)

1 1
((pB La—ig)(pp - bc+ie) (pB - Llc—i€)(pB - €A+i€))
can be expressed as using

( 0(pa - £a) 0(pa - ¢p) ) y ( 0(pp-Lc)  O(pp-La) )

pA°€B (23 pB°€A (23

p3°€A (23 PB ’EC (23




Even simpler organisation of results — velocity
cuts, exponentiation and soft expansion

An example of this is the ‘velocity cuts’ is a clever to organise the
integrand for simpler computations. The basic observation is that
the combination of linear propagators

( 1 1 ) y
(Pa - Latic)(pa-le—ie) (pa-Lp+tie)(pa-Lla—ic)

(Gr e G-t
(pB : KA—iE)(pB . g(]+i€) (pB . EC—iE)(pB y €A+i6)

can be expressed as using
S(pa -0 S(pa -t S(pp - ¢ S(pp - £ 1 1 .
( (PA A). (PA B? ) v ( (PB C? (pB A). ) . - —22%5(3{:)
pa-tp+ie pp-la+ie pp-fa+ie pp-lc+ie T + 1€ r — 1€




We can see this in the organisation of the one-loop

G

/ dP/ 1 + 1
27rh)D€2€—I—q ( —p1 +£)2 —ms5 +ic  (p) +£)? —m3 +ic

1
+

X .
(—p2 + £)? —m2+zs (P’2+€)2_m§+i5)
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We can see this in the organisation of the one-loop

g|°~°% [ dPk 1

0= =g / (21)P k2(k + ug)?

1 1
. h|q|ug -k : _ hlg|lug -k :
pr-k+——+1iw p-k — 1€




We can see this in the organisation of the one-loop

I —

D _ 5o h _ ok _ 5 _h _ o gk
|Q\D 6/ AP I 1 p1 = D1+ 59, P1 =Dy — 54, P2 = D2 — 54, Py = Dy + 54

sh2 | (2m)P k2(k + uy)?

1 1
. _ h|q|ug -k : _ hlg|lug -k :
pl'k | _2q + 1€ plk' _2q (23




We can see this in the organisation of the one-loop

I —

D _ 5o h _ ok _ 5 _h _ o gk
|Q\D 6/ AP I 1 p1 = D1+ 59, P1 =Dy — 54, P2 = D2 — 54, Py = Dy + 54

8rz ) (2m)P K2 (k + ug)? 7 = lglu,

1 1
. _ h|q|ug -k : _ hlg|lug -k :
pl'k | _2q + 1€ plk' _2q (23




We can see this in the organisation of the one-loop

I —

D _ 5o h _ ok _ 5 _h _ o gk
|2‘D 6/ 4P I 1 p1 = D1+ 59, P1 =Dy — 54, P2 = D2 — 54, Py = Dy + 54

8h2 ) (2m)P k*(k +ug)® £ = hlg|l q = |q|ug

1 1
. _ h|q|ug-k : _ hl|Glug -k :
pl'k' | _2q + 1€ plk' _2q (23




We can see this in the organisation of the one-loop

q|"” " dP L 1 p1=P1+ 59, Py =Py — 54, P2 = P2 — 54, Py = Py + 39
o
8h2 ) (2m)P k*(k +ug)® £ = hlg|l q = |q|ug
1 1
X ( h|gluq-k - hlgluq-k - )
pr-k+——+1w€e p-k =5 1€
y 1 1
Can be seen to be cancelled Iin By - k hlé’l;tq-k ic  Dy-k+ hlé’\gq-k e

subtractions



We can see this in the organisation of the one-loop

@D_G / dPk 1 Pr=p1+ Sg, py =D — Sg, P2 = P2 —
(2m)° k%(k + uy)? £ = ﬁ\g\l q = ‘Q|Uq

’ 1 1
o Ak e gy MR

1 1
X — _.
Can be seen to bg cancelled in (ﬁz o Mdlugk Do - Mdlug k| ig)
subtractions

G|" > dP] 1 5(pa-1)  8(p1- 1)
__ 7l—Ccut ] D—4
=1t en / )P 2+ uy)? ( 502 (B )“LO("” )




We can see this in the organisation of the one-loop

G|P—° 4P I 1 p1=P1+ 5q, Py =P — 54, p2 = P2 — 54, Ph = Dy + 5¢
o
8h2 ) (2m)P k*(k +ug)® £ = hlg|l q = |q|ug
9 1 1
-k + hmluq +1i Pk hlg‘;"'k iE
9 1 1
Can be seen to be cancelled in By -k — Malugk _ . By - k + Mdluak |
subtractions ‘ :
= D — — —
] — Jl—cut 4 ‘2‘ 5/ d”1 1 5( 2° l) + 5( 1~ l) + O(lqlD—4)
16h ) (2m)P-102(0+u,)2 \(p1-£0)2  (py - £)? -
e 1170 RVl B 01X
4 h? 4m%m%(ﬁyz —1 h2|Q|2g(32M ) (27T)D_2 kQ(k -+ uq)2

4m1m2



We can see this in the organisation of the one-loop

G|P—° 4P I 1 p1=P1+ 5q, Py =P — 54, p2 = P2 — 54, Ph = Dy + 5¢
o
8h2 ) (2m)P k*(k +ug)® £ = hlg|l q = |q|ug
9 1 1
-k + hmluq +1i Pk hlg‘;"'k iE
9 1 1
Can be seen to be cancelled in By -k — Malugk _ . By - k + Mdluak |
subtractions ‘ :
= D — — —
] — Jl—qut 4 ‘2‘ 5/ d”1 1 5( 2° l) + 5( 1~ l) + O(lqlD—4)
| 16h ) (2m)P-102(0+u,)2 \(p1-£0)2  (py - £)? -
e 1170 RVl B 01X
4 h? 4m%m%(ﬁyz —1 h2|Q|2g(32M ) (27T)D_2 kQ(k -+ uq)2

4m1m2
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Different form for amplitude

Feynman diagrams
sSuUms separate
Kinematic poles

String theory
add channels up..

<->

4 X 1 M 1
1 1 2
512 SIM 5123
= >—"—< + + \J'*!——<
Y ~ 2 3
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Compact massive tree amplitudes

Find ‘stringy’ structure in the scattering equation prescription (CHY)
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Find ‘stringy’ structure in the scattering equation prescription (CHY)
(NEJB, Damgaard, Tourkine, Vanhove)

Hz dz; k ki - k; 1
An—2(1,{2,-..,n = 1},n) = vol(SL12 C)) H(S, Z 'j 212"

i1 %] 'Zn—1n
JF1

« Z ng].,B( n—l),n)

e, FLB(2)ZB(2)B(3) " 2B(n—1)n

)

We can generate gravity amplitudes in the following way

Mre5(1,2,...,n) =% »  Np—2(1,8(2,---,n—1),n)An_2(1,8(2,...,n—1),n)
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very compact amplitudes

Mfree(pa 627 _p,) =1 Ny (p7 ZQ) _p,)Al(pa £27 _p,) — ZNl(pa £27 _pl)2:
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Compact massive tree amplitudes

Straightforward

CHY formalism leads to the following to compute any

very compact amplitudes tree
M{*®¢(p, by, —p') = i N1(p, ba, —p')A1(p, €2, —p') = i N1(p, L2, —p)* order needed
with manifest
M3 ¢ (p,£a,43,—p") =i Na(p,2,3,—p") A2(p,2,3, —p') +perm.{2,3} color-kinematic
iN2(p,2,3,—p)? | iNa(p,3,2,—p)* | i(N.*%)> ~ numerators
" (ba+p)2—m2+ie | (b3+p)2—m2+ie  (la+03)2+ie~  NO double
poles (from
Nl(p7€27_p,) — 7’\/§<2 P Al(p7£27_p,) — Nl(p7£27_p,): KLT)
. - Spin-0,
Na(p, £2, 43, —p') = 5(3219(42 +(3) —4(C2 - p)C3 - (P + fz)) spin-1/2 .. easy
| ) | to derive

(NEJB, Brown, Gomez)
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Lessons from exponentiation of the S-matrix

This can be further refined via the direct identification of the radial action.
Considering the following representation of the exponentiated amplitude, one has

T T rrad _ Arad

ral (= 7’]/\7 % r L g \TTa rra e rra rrad
S =14 hT = €exp (7) Ny =T thoza Ny = T 2h(ToTo ©+ 15 T),
&~ U twady\2 Lo & 4 | e
Ny = Ty — o (154 — (T + i) — 575

Bern et al Damgaard, Plante, Vanhove

- It Is easy to see which terms needs to be computed and identity the classical
contributions to the radial action
new radiation terms allow ‘radiation reaction’ to be automatically
correctly accounted for



Example: Einstein gravity at two-loop order
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Simplifications from the
exponentiation of the S-matrix

Now It Is clear how ‘unitarity’ removes certain terms
when computing the radial action N

M o (o1, pali 19}, ) o o1 2ol K9}, 5) + 7 (o, pal 314, 1)
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M@l 7. B) = S 16 Gmim3(27? — D)I5 + Ni(1d], %) + O(h)
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Velocity cuts tree diagrams / soft expansion
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Conclusion

So amplitude techniques are surprisingly efficient in Post-
Minkowskian gravity computations and bridging the gap to current
data.

NB: different setup from QCD

Gravity: New insights have been necessary to develop alongside
brute-force computations

We have efficient frameworks for computation but still much
more to learn

For GW community: automatic programs could be useful

We are still far from that... each new loop order brings new
problems...

Current bottlenecks: Solving the integral-system: identifying IBP-
relations, solving the DE equations/integrals.

Better understanding of what the minimal computation is could
lead to much simplified analysis.

32}
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Outlook

Amplitude toolbox for computations already provided many
new efficient methods for computation

 Amplitude tools very useful for computations

* Double-copy/KLT * |dentifying IBP-relations
* Unitarity solving DE equations/

» Spinor-helicity integral

* CHY formalism * Recycling tools from

* Low energy limits of string theory QCD computations

* Numerical programs for
amplitude computation
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* Finite size effects
» String theory amplitudes useful?

Clearly much more physics to learn....
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