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● Geometrical description <-> EFT-

QFT (flat space) formulation
● Higher derivative bounds

● Graviton properties/mass etc
● Cosmological models
● Equivalence principle and quantum 

physics
● Extra dimensions / SUSY
● String theory….
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of black holes

●Direct access to gravitational interactions 
in the most extreme regimes

●Possibility of complimenting conventional 
analysis.

●A current need for theory to catch up to 
match observational progress & precision

●Many Interesting questions to study: 
Validity of GR/ gravity phenomenology/
new theories? 

Amplitudes methods allow refined computation and increased precision!
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●Known since the 1960ties that a particle version of General Relativity 
can be derived from the Einstein Hilbert Lagrangian (Feynman, DeWitt) 
● Expand Einstein-Hilbert Lagrangian :

●Derive vertices as in a particle theory - compute amplitudes as 
Feynman diagrams! (GW Kovacs and Thorne 1977)

gμν ≡ ημν + κhμν

Off-shell QFT methods: not very computationally efficient!





Bern, Dixon, Kosower et al.
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Advantages: Gravity as an EFT
●Treating general relativity as an effective field theory avoid 
complications and confusions in quantising gravity - 
●Natural generalisation of Einstein’s theory
●Ideal perturbative setup for QFT analysis of black hole binary mergers

●Universal consequences of underlying fundamental theory 
●Direct connection to low energy phenomenology of string and super-
gravity theories

●Classical GR has a huge validity for normal energies
●GR-EFT is attractive for investigating quantum aspects
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Gravity from quantum field theory
• We start with Einstein-Hilbert term

• where the minimal ‘energy-momentum’ tensor is

• Consider the 2 -> 2 process from path integral  

𝒮 = ∫ d4x −g[ R
16πG

+ gμνTμν]

Tμν ≡ ∂μφ∂nuφ −
ημν

2 [∂αφ∂αφ − m2φ2]

φ1(p1, m1) + φ2(p2, m2) → φ1(p′￼1, m1) + φ2(p′￼2, m2)
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• We use the language of old-fashioned time-ordered perturbation theory

• In particular we eliminate by hand
• Annihilation channels
• Back-tracking diagrams (no intermediate multiparticle states)
• Anti-particle intermediate states

We will also assume (classical) long-distance scattering (this has the 
consequence that we can focus on non-analytic contributions -> ideal for unitarity)

(NEJBB, Donoghue, Holstein; Cristofoli, NEJBB, Damgaard, Vanhove)

Classical gravitational scattering 
from quantum field theory
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Newton’s law through Fourier transform

Tree level

V(r) = −
Gm1m2

r
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Long range behaviour can be efficiently be captured from the evaluation of 
unitarity cuts for using on-shell tree amplitudes

Computations: Loop level

KLT+on-shell input trees 
(e.g. Badger et al., Forde, 
Kosower) recycled from 
Yang-Mills -> gravity
In D-dimensions from CHY 
(NEJBB, Cristofoli, 
Damgaard, Gomez; 
NEJBB, Plante, Vanhove)(Neill, Rothstein; NEJBB, Donoghue, Vanhove)



Classical gravitational scattering 
from quantum field theory



Classical gravitational scattering 
from quantum field theory

• Surprise: Non-linear (classical) corrections from loop diagrams!
• Can consider the various exchanges



Classical gravitational scattering 
from quantum field theory

• Surprise: Non-linear (classical) corrections from loop diagrams!
• Can consider the various exchanges

• Define transfer momentum, CM energy



Classical gravitational scattering 
from quantum field theory



Classical gravitational scattering 
from quantum field theory



Classical gravitational scattering 
from quantum field theory

● Classical limit: we keep wave number fixed and take Planck’s constant to 
zero, leads to the following Laurant expansion (quantum / classical / 
superclassical terms)



Classical gravitational scattering 
from quantum field theory

● Classical limit: we keep wave number fixed and take Planck’s constant to 
zero, leads to the following Laurant expansion (quantum / classical / 
superclassical terms)



Origin: classical pieces in loops



 Expansion of massive propagators

Origin: classical pieces in loops



 Expansion of massive propagators

Origin: classical pieces in loops



 Expansion of massive propagators

Close contour

Origin: classical pieces in loops

(NEJBB, Damgaard, Festuccia, 
Plante, Vanhove)



One-loop result for gravity



Four-point amplitude can be deduced to take the form

One-loop result for gravity



Four-point amplitude can be deduced to take the form

One-loop result for gravity



Four-point amplitude can be deduced to take the form

One-loop result for gravity



Four-point amplitude can be deduced to take the form

One-loop result for gravity

Short range behaviour



Four-point amplitude can be deduced to take the form

One-loop result for gravity

Short range behaviour



Four-point amplitude can be deduced to take the form

One-loop result for gravity

Short range behaviour



Four-point amplitude can be deduced to take the form

One-loop result for gravity

Short range behaviour

Long range behaviour



Four-point amplitude can be deduced to take the form

One-loop result for gravity

Short range behaviour
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(NEJBB, Donoghue, 
Holstein; NEJBB, 
Donoghue, Vanhove)



One-loop result for gravity



The result for the amplitude (in coordinate space) after summing all 
diagrams in (leading in small momentum transfer contribution):

One-loop result for gravity

(NEJB,  
Donoghue, 
Holstein)



The result for the amplitude (in coordinate space) after summing all 
diagrams in (leading in small momentum transfer contribution):

One-loop result for gravity

Classical 

(NEJB,  
Donoghue, 
Holstein)



The result for the amplitude (in coordinate space) after summing all 
diagrams in (leading in small momentum transfer contribution):

One-loop result for gravity

Classical Quantum

(NEJB,  
Donoghue, 
Holstein)



The result for the amplitude (in coordinate space) after summing all 
diagrams in (leading in small momentum transfer contribution):

Post-Newtonian term in complete accordance with general relativity 
(Iwasaki; Holstein and Ross; Neill and Rothstein; NEJBB, Damgaard, 
Festuccia, Plante, Vanhove)

One-loop result for gravity

Classical Quantum

(NEJB,  
Donoghue, 
Holstein)
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(Einstein-Infeld-Hoffmann, Iwasaki; NEJBB, Donoghue, Holstein; Holstein, 
Ross) Crucial subtraction of Born term in order to the correct PN potential

Post-Newtonian interaction potentials

3 −
7
2

= −
1
2
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• Post-Minkowskian expansion of Einstein’s general theory of relativity has received much 
recent attention in the amplitude community

• Idea: use scattering amplitude to provide a self-contained  framework for deriving the two-
body scattering valid in all regimes of energy and employ the computational power of 
modern amplitude calculations in an expansion in G (Damour)
• On-shell Integrand construction
• Multi-loop integration
• IBP relation reduction (various programs)

• Modern integration techniques .. 
• Integration regions .. PDE approaches

• Main focus on the two-body problem in general relativity without spin

• NB: Many other problems can be considered in this framework

Post-Minkowskian framework and amplitudes
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Order by order in Planck’s constant
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One-loop amplitude after summing all contributions

Relation to a PM potential

(NEJBB, Cristofoli, 
Damgaard, Vanhove)

How to relate to a classical potential
• Choice of coordinates
• Born subtraction/Lippmann-Schwinger

Imaginary 
super-classical/singular .. 
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Born subtraction important to make contact with classical physics
One-loop

Again same result as from matching, singular term gone!
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Classical gravitational scattering: 
Loop level

• 1) compute multi-loop cuts and 2) use consistency of the representation 
in master integrals to generate the full non-analytics pieces of the 
amplitude (classical and super-classical contributions)

•                     
Extraction of integrand similar to QCD


Spinor-helicity and D-dimension 
covariant tree 


amplitudes can be used in cuts 
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Einstein gravity at two-loop order

Can e.g. use helicity formalism
 to derive D=4 integrand — from traces..

Alternative is covariant tree - D-dimensional formalism 
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Einstein gravity at two-loop order

Needed master integrals at two-loops for the conservative part of the 
amplitude - determined by LiteRed/FIRE6/KIRA etc.
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Imaginary
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Gravity amplitude in powers of hbar

Laurant expansion in 

Planck’s constant


- imaginary contribution

cancelled by radiative 


contributions 
(Di Vecchia, Heissenberg, 


Russo, Veneziano)

(Bern et al, Parra-Martinez et al)
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Gravity amplitude in b-space

Again iterative

structure like 

one-loop, part 
of a bigger 

scheme..Seen 
after Fourier 

transform to b 
space
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Match with expectations

  (Damour; Di Vecchia et al; Hermann et al) (NEJB, 

Damgaard, 

Plante, 

Vanhove)

What is nice to see is the fact that everything matches up!

- the cancellation of terms that is demonstrated explicitly gives 

important consistency of computations.
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Compact massive tree amplitudes
CHY formalism leads to the following 


very compact amplitudes

Straightforward 
to compute any 

tree 

order needed 
with manifest 

color-kinematic 
numerators


- no double 
poles (from 

KLT)

- Spin-0, 

spin-1/2 .. easy 
to derive

(NEJB, Brown, Gomez)
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Lessons from exponentiation of the S-matrix
This can be further refined via the direct identification of the radial action.


Considering the following representation of the exponentiated amplitude, one has 

Bern et al

-          It is easy to see which terms needs to be computed and identify the classical 
contributions to the radial action


- new radiation terms allow ‘radiation reaction’ to be automatically                                  
correctly accounted for

Damgaard, Plante, Vanhove



Example: Einstein gravity at two-loop order
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(NEJBB, Plante, Vanhove)
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Simpler integrand - velocity cuts tree topologies!

Probe amplitude

Next-to-probe amplitude
Simpler computation of integrands

(Brandhuber, 
Chen, 
Travaglini, Wen)

(NEJBB, 
Plante, 
Vanhove)

- heavy mass vs small |q| expansion?

- some similarities / some differences

Interesting stuff to 
investigate

Heavy-quark—EFT inspiration: 
(Damgaard, Haddad, Helset )
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●NB: different setup from QCD 
●Gravity: New insights have been necessary to develop alongside 
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●We have efficient frameworks for computation but still much 

more to learn
● For GW community: automatic programs could be useful 

● We are still far from that… each new loop order brings new 
problems…

●Current bottlenecks: Solving the integral-system: identifying IBP-
relations, solving the DE equations/integrals. 
●Better understanding of what the minimal computation is could 

lead to much simplified analysis.



Outlook
Amplitude toolbox for computations already provided many 
new efficient methods for computation

• Amplitude tools very useful for computations
• Double-copy/KLT
• Unitarity
• Spinor-helicity
• CHY formalism
• Low energy limits of string theory

• Identifying IBP-relations 
solving DE equations/
integral

• Recycling tools from 
QCD computations

• Numerical programs for 
amplitude computation
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                                                                THANKS!


