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With Anne Spiering (and Raul Pereira)

» Non-planar Spectrum of N = 4 SYM: analytical formula for one-loop
anomalous dimensions via perturbed integrable model and spin-chain scalar
products. [2005.14254]

» Random Matrix Theory description of statistical properties of finite-N
spectrum: signature of quantum chaos. [2011.04633]

» Marginally deformed theories: found holographic, weak coupling analogue of
chaotic strings in deformed AdS geometries. [2202.12075]


http://arxiv.org/abs/
http://arxiv.org/abs/
http://arxiv.org/abs/

SAGEX Projects: Asymptotic Symmetries and Celestial Holography

With Riccardo Gonzo and Anne Spiering (and Diego Medrano)
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» Faddeev-Kulish approach to QCD (& la Catani and Ciafaloni): in principle
defines dressed IR finite amplitudes including collinear divergences.

» Showed conservation of asymptotic charges - defined via soft-evolution
operators - corresponding to large gauge transformations and the resultant
Ward identity to one-loop and leading order in IR divergences. [1906.11763]

» The study of asymptotic symmetries in gauge and gravity theories has led to
recent reformulations of scattering amplitudes in alternative variables.


http://arxiv.org/abs/

Celestial Holography

Reformulation of 4D Minkowskian scattering amplitudes (in scalar theory, gauge
theory, gravity, ...) in the language of conformal field theory.

Reviews (and references):
> Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory

» S. Pasterski, M. Pate, and A.-M. Raclariu, “Celestial Holography,” in 2022
Snowmass Summer Study

» SAGEX Review Chaper 11 with Puhm and Raclariu



Celestial Holography

Reformulation of 4D Minkowskian scattering amplitudes (in scalar theory, gauge
theory, gravity, ...) in the language of conformal field theory.

»> Motivated by the group identification
S07(3,1) ~ PSL(2,C) ~ Aut(C)
» Such a reformulation is interesting as it can reveal new properties, connections

and hidden structures (e.g. sub-leading soft theorems, memory effects, ...)

» Points to a holographic description of quantum gravity asymptotically flat
space-times. Good reasons for such a description exists e.g. BH entropy

formula Sgn = L,: Planck length



Celestial Holography

Boundary description of quantum field theory in Minkowski space-time:

(=

i_
Massless momentum can be parameterized:

pt = niwi(l+ |z zi + 2, —i(z — 2),1 — |z|)

P I

= ow)
o) i)




Celestial Conformal Field Theory

Good observables in gravity (and other theories!) are S-matrix elements:

boost<0Ut|S|in>boost — <O:At (217 21) oo O:At (Zm Zn)>CCFT

» Each massless momentum labels a point at g*
» Transform asymptotic states from momentum states to boost eigenstates

> Operators labelled by position on 2-sphere, SL(2, C) conformal dimensions A;
corresponding to boost eigenvalue and spins J;

Lo=—45(Js+iKs), Lo=—4(—J)s+IiKs)



Conformal Primary Wavefunctions

Define conformal primary scalar wavefunctions by transformation properties:

PA(NEXY, 25B) = ez + d|P 2 da(X*, 2)

? cz+d



Conformal Primary Wavefunctions

Define conformal primary scalar wavefunctions by transformation properties:
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Conformal Primary Wavefunctions
Define conformal primary scalar wavefunctions by transformation properties:
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> Arbitrary complex A; when A € 1+ i R (principle continuous series of
SL(2,C) ) form a complete §-function normalizable basis



Conformal Primary Wavefunctions

Define conformal primary scalar wavefunctions by transformation properties:

Da(ALXY, 25b) — |z 4 d)PPda(XH, 2)

’ cz+d
e.g. Mellin transform of plane-waves

> 1 divg NAT(A
dE(X; 2) :/0 dw W™ tet WX = 7((1:(’))(1)2

> ¢" =(1+|zf z+ 2z —i(z — 2),1— |z])
Solution of O =0

> Arbitrary complex A; when A € 1+ i R (principle continuous series of
SL(2,C) ) form a complete §-function normalizable basis

v

» Given amplitude of massless particles construct CCFT correlator by taking
Mellin transform on all external legs:

(B, 2) = M[A] = H/ denw LA, (wr, z:)
k=1

Transforms with definite weights (A, J;) under SL(2, C).



Conformal Primary Wavefunctions

Define conformal vectors, metrics, .... etc by transformation properties:

Ou(NOXY, Z55) = (cz + d)* (cz + d) T D(N): @A (X", 2)

? cz+d

e.g. Shockwaves: ¢a—1(X;z) = log X*6(q - X) ,

AZ:O,J:O(X; z) = ¢"pa-1(X; 2),
hgi—LJ:o(XF z) = q"q"pa-1(X; 2)

» Solution of massless wave equation with massless point source



Conformal Primary Wavefunctions

Define conformal vectors, metrics, .... etc by transformation properties:

Ou(NOXY, Z55) = (cz + d)* (cz + d) T D(N): @A (X", 2)

e.g. Shockwaves: ¢a—1(X;z) = log X*6(q - X) ,

AZ:O,J:O(X; z) = q"pa=1(X; 2),
hgi—l,J:O(X; z) = q"q" pa-1(X; z)

» Solution of massless wave equation with massless point source

» Spin-1 version is solution of Maxwell equations and spin-2 version is Kerr-Schild
form of Aichelberg-Sexl metric (exact solution of Einstein equations)



Celestial Amplitudes

The four-point amplitude can be written as a universal prefactor times a function of
the cross-ratios z, Z

h h _ \h _ \h
(ﬁ)u(ﬂ)m(ﬁ)u(ﬂ)m
w - 214 213 214 213 R -
Au(Aj, 2, 2) = Au(z, 2)

hi+hy _h3+hy —hy+hy =h3+hy
212 %3 21y Zy

» Conformal weights (h[, 77]) = %(A, + J,'7 A — J,) with h,‘j =h; — hj
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Celestial Amplitudes

The four-point amplitude can be written as a universal prefactor times a function of
the cross-ratios z, Z

h h _ \h _ \h
(224) 12 (214) 34 (224) 12 (214) 34
w 214 213 214 213 R -
= As(z,2)
b

.A4(A,',Z,‘,Z,') h1+hy _h3+hy —hy+hy =h3+hy
212 %3 21y Zy

» Conformal weights (h,‘, /_7]) = %(A, + J,', A — J,) with h,‘j =h; — hj

» Cross-ratios o
212234 - Z12Z3

z= , Z= =
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» Two scalars with photon exchange: (A; =1+ iv;, vi € R, Ji =0)

Au(2,2) o ey, €4,0(i2 — iz)(z — 1) 7272220 2(1 4 7) / dww> i

We use Z(s) = /000 dww®™ ' = 276(Im(s)) with Re(s) = 0.



Celestial Amplitudes

The four-point amplitude can be written as a universal prefactor times a function of
the cross-ratios z, Z

h b /- NP . B
<2274) 12 (2174) 34 ({274) 12 (Eﬁ) 34
e - 214 z13 214 213 > _
Au(Diy 2, 7)) = Au(z, 2)

hi+hy _h3+hg —hy+hy =h3+hy
12 % 212 23

» Two scalars with graviton exchange: (A; =1+ iv;, v € R, J; =0)

~ iK?

Ai(z,2) = 7(71)%5(;2 —iz)(z — 1)*2h2*2haz2hz(z A;—2)

We use Z(s) = /OOO dww®™! = 276(Im(s)) with Re(s) = 0.



Amplitudes on Backgrounds

We want to extend the computation of celestial quantities to amplitudes on
non-trivial backgrounds.

» We consider two-point tree-level amplitudes for scalar field minimally coupled
to electromagnetism and gravity.
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Amplitudes on Backgrounds

We want to extend the computation of celestial quantities to amplitudes on
non-trivial backgrounds.

» We consider two-point tree-level amplitudes for scalar field minimally coupled
to electromagnetism and gravity.

» We consider asymptotically flat backgrounds including Schwarzschild,
Aichelberg-Sex| shockwave, Gyraton, Kerr and v Kerr-Schild analogues.

» Use method of Boulware and Brown: classical solution gives tree-level
generating functional of connected correlation functions W[J] as
dy[J] =W /dJ.

» Amplitudes are found using LSZ prescription:

n—1 Jrd

Lo . 0Dy(—

lim /p,z,H lim ip? M

i=1 P70 6J(pl)

p2—0

A(Pl, . '7p")

J=0



Two-point Amplitude in Scalar Electrodynamics

1/\?2

Solve wave equation
b — 2ieA" D, — ied A'D — A A D = J

perturbatively in e

with

50y =20 50y = & [ LE Ao o+ K)IO)

p (2m)

gives the leading amplitude

A (p1, p2) = e(p1 — p2) A (p1 + p2)



Ex 1: Two-point Amplitude on Coulomb Background
DO

So with Coulomb potential A, (x) = Forq" with ¢ = (1, é) the amplitude is

0 0 0
(pi + p2)

AW ) = —4meQEL
2,Coulomb(p1 p2) (Pl i p2)2

and Mellin transforming we have

2\ A2—1
A Ay Ay = (2r)2 9 L (Ltlml (A + Ay —2
A2,Cou/omb( 1,Q2) = (27) a7 (2122 \ 1+ |22 (AL + Ao )

» No kinematic delta-function; delta-function support for dimensions on principle
series

» Distinctive |212|_2 two-point function dependence

» Similar result for Schwarzschild but integral is not convergent on principle
series, Z(A1 + Ay — 1)



Ex 2: Two-point Amplitude on Point Source Background
1 /\ D2

Charged particle corresponding to a current j*(x) = — / dr ¢"(1)6W(x — y)

generates a potential with two-point amplitude:

AP (pr, p2) = feQ/dT (P — qe”("”"z)
(p1 +P2

For a massless source (shockwave background) with 4-velocity
q“ - (1 + |zsw‘ Zsw + st7 (zsw zsw), 1- |zsw|2)

The Mellin transformed amplitude

eQ(2m)38(i(A1 + Ay — 2))

7(1) _
-Az (A1:A2) - |212|A1+A2|215W|A17A2|225W|A27A1

Has the form of a standard CFT three point amplitude!



Ex 2: Three-point Correlator from Shockwave Background

Start from form factor of electromagnetic current

Asu(pr, p2, p) = (p1lja(p)Ip2) = e(27)*6™ (b1 + p2 + p) (1 — Pay)

Mellin transform massless on-shell legs and use electromagnetic shockwave
wavefunction

AS%;M(X7 q) = _qu, |0g(X2)5(q . X)

- d*p d(p-q) i
ip-x1 __ 2 ip-x
S.[e"*] =8nr Qqu/ oy e

so that

Az(Ar, A, Ay = 0)

MIS.[A5 (p1, p2, P)]]

eQ3(i(A + Dy — 2))

|z12] 2182 1, | 21782 25, [R2 =21

i.e. same as AS). The two-point function in the shockwave background is a
three-point function with the background state created by a shockwave operator.



Ex 3: Two-point Amplitude on Gyraton Background

Consider scalar field gravitationally minimally coupled to metric
8uv = Nuv + hpw

with h,, taken to be small. Equation of motion

0¢ — W 0.0,¢ — Ou(h" = 3h* 0" )Dud = J

= AP (p1,p2) = = [(P1)u(P2)s = §murpr - p2) " (P1 + p2)
Spinning particle infinitely boosted along axis of rotation (gyraton)

huw = —auqurod(q- x)log(x* — a%)
= 4n°ququnia / d* 5(‘|’ |q) H?) (a|p|)e?™ = 83, [P

» h,, is conformal primary metric of dimenson A = —1, spin J = 0.

1
=" -p%).

» Take g* = (1,0,0,1) for convenience and p; 2(



Ex 3: Two-point amplitude on Gyraton Background

Amplitude is given by Hankel function:

PPy (P +py)

AW — g3 riaH® (alpr +
2 0 71( ‘pl pQ‘) |p1+p2|

to leading order in G (via rp), all orders in a. The Mellin transformed celestial
two-point function is:

Dp—NAg+1

T 1-A1—Ay 2 2 5
AL ion(B1, B2) = (zﬂ)aoﬁ(ﬂ )

2,gyraton |212‘A1+A2+l ‘Z2|2

xT' (A1 + Ao — 1)

» Integral is finite and smooth for a range of dimensions:

_ _imT(1+5/2)

T'(s) = 2 T —s/2) (1+icot(ms/2)), 0 < Re(s) < 1.

Spin “softens” high-energy behaviour, exactly same seen in electromagnetic
analogue (Z'(A1 + Az — 2)); somewhat similar effect for Kerr/spinning
charged particle.



Ex 3: Three-point Correlator from Gyraton Background

Consider form factor of stress-energy tensor

A3;;LV(P17P2~,P) = <p1‘7~—ﬂ'”(p)‘p2>
= —/1(2#)45(4)(p1 + p2— ,D) [PIMPZV - %nuupl . PZ]

Mellin transform massless on-shell legs and use spinning shockwave wavefunction
. . 2 - = 2
So that again taking " = (1 + |Zssw|", Zesw + Zssw, I(Zssw — Zssw ), 1 — | Zssw|”)

As(Ar1, D0, Asow = —1) = M[S;,[AS" (p1, p2, p)]]

Al AR T (AL 4 A — 1)
|212|A1+A2+1‘ZISSW|A17A271‘2255W|A27A171

» Agrees with two-point amplitude computed in gyraton background: Shockwave
backgrounds have CCFT operator interpretation. Not obvious for “massive”
backgrounds e.g. Schwarzschild & Kerr.



All Order Amplitudes and IR divergences

All previous results are linear order in the background.

P1 P2

» We can solve the wave-equation iteratively

3b(— —p2,—kD) AP K"V, —py)
5_/,,1 - Z/H k(1)2

P2

> Resum in the eikonal approximation: 1/(k'") + p1)* — 1/2k™ . p; and
dropping powers of k® in numerators, so the amplitude becomes

d*k A(—k) - pz]

@2r)*  k-p Agl)(Pl,PZ) .

A (p1,p2) = exp [e

Familiar Wilson line result in eikonal limit. Similar result in gravity.



All Order Amplitudes and IR divergences

» For point particle backgrounds eikonal phase factor produces IR divergent
prefactor and factorization persists for celestial amplitudes:

2
AQR(Al,Az) :/Hdw;w,-A"flAéR’e'k(m,wm131,132) :AS‘”%Q”
i—1

IR divergent prefactor is operator valued in gravity.
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All Order Amplitudes and IR divergences

» For point particle backgrounds eikonal phase factor produces IR divergent
prefactor and factorization persists for celestial amplitudes:

2
AQR(Al,Az) :/Hdw;wiA"flAéR’e'k(m,wz,131,132) :AZ‘”%‘;)
i—1

IR divergent prefactor is operator valued in gravity.

» Wave equation result can be matched to eikonal limit of 4-pt amplitude and IR
divergences are related to known all-order results for amplitudes/celestial
correlators.

» Interpretation as vertex operator correlation functions of Goldstone bosons for
large gauge symmetry/supertranslations and a composite operator for
background.



IR divergences from Vertex Operators

For massless source/shockwave we introduce two bosons ®™) and ®(7) which have
the two-point functions

1

- (In 2+ i6m)

(©(2)0"(z)) =

We define the dressing factor for in-/out-going particles as R,eq) = nkek¢(¥)(zk) and
background dressing operator the appropriately normalised normal ordered product

i i i . _
e Mo —. g7 2RPae2RPs .= exp[— /%(CDH) — ! ))}
Soft factor of the two-point amplitude/three-point correlator can be written as
st — (e™ov iR giR2)

Contractions between R; and R» are sub-leading and neglected.



IR Finite Correlators

IR finite celestial amplitudes between massless scalars are obtained by dressing the
conformal primary operator for outgoing or incoming states:

A+ . _2ae? —ienP(z +
O(AkLOZEi(Z) = Zlinw\z — w| Tk e Ik @) .. O(Ak)(w) :

Note shifted dimension.
Similarly define a dressed shockwave operator

@sw(z) = lim : eiio(d)H)(Z)id)(i)(Z) o OSW(W) :

Z—w
The IR finite two-point amplitude in the shockwave background is then
Agressed — <©SW(ZSW)@(A;)(ZI)©(AZ)(22)>

where contractions between the Goldstone bosons cancel the IR divergent phases



Conclusions

Computed tree-level two-point amplitudes in various Kerr-Schild backgrounds
and their celestial counterparts.
For backgrounds which are conformal primary potentials/metrics two-point
amplitudes can be interpreted as three-point functions

» Can this be extended to other backgrounds?

» To “massive” backgrounds e.g. Schwarzschild?
Can we include higher-order results? Included all-order eikonal phase factors
for point particle backgrounds.

» Can we incorporate next-to-eikonal? Genuine quantum corrections?
» IR divergences for AS shockwaves have natural interpretation in CCFT, can this
be extended to spin? to loop effects? to massive backgrounds?

Can we learn anything interesting about quantum gravity?



