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Motivation: From N = 4 SYM to the real world

N = 4 super Yang-Mills (SYM) theory: an ideal theoretical laboratory for
developing new paradigms leading to significant practical applications.

For example,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower’94. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich’10]

▸ Canonical Differential Equations [Henn’13]

All of them crucial in recent state of the art calculations for collider and
gravitational wave physics
[Abreu,Ita,Moriello,Page,Tschernow,Zeng’20] [Bern,Parra-Martinez,Roiban,Ruf,Shen,Solon,Zeng’21]
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The Role of Cluster Algebras

Tremendously successful in describing singularities of n-particle amplitudes
An in planar (color N →∞ with λ = g2YMN fixed) limit of N = 4 SYM.
[Golden,Goncharov, Spradlin,Vergu,Volovich’13][Drummond,Foster,Gurdogan’17]

⇒ results for n = 6,7 to unprecedented loop order. [Drummond,GP,Spradlin’14]

[Drummond,Foster,Gurdogan,GP’18] [Caron-Huot,Dixon,Dulat,Hippel,McLeod,GP’19A+B]

Recently observed to underlie analytic structure of a host of Feynman
integrals and realistic processes such as Higgs+jet production in heavy-top
limit of QCD! [Chicherin,Henn,GP;PRL 126 091603 (2021)]
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Long-standing Burning Questions

In N = 4 SYM, relevant cluster algebras for An with n ≥ 8

1. become infinite ⇒ loss of predictability?

2. Cannot describe more intricate singularities found in explicit
calculations [He,Li,Zhang’19’20][Li,Zhang’21]

Natural resolution of both issues from connection with tropical geometry

This talk

Explicit singularity predictions for
▸ n = 8 [Henke, Papathanasiou’19]

see also [Arkani-Hamed,Lam,Spradlin’19][Drummond,Foster,Gurdogan,Kalousios’19B]

▸ In principle any n, explicitly n = 9, [Henke, Papathanasiou’21]

see also [Ren,Spradlin,Volovich’21]

In agreement with all known amplitude data.
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Outline

Introduction: Cluster Algebras and N = 4 SYM

Relation to Tropical Grassmannians

Predictions for 8- and 9-particle Singularities
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Planar N = 4 Amplitudes: Symmetries and Kinematics

⋯ L1

p2, h2

pn, hn

p3, h3

p1, h1

momenta p2i = 0, helicities hi = ±1,
degree m = (#hi = −1)−2 (NmMHV)
loop order L

amplitude A(L)
n,m(Xi(p1, . . . , pn))

Dual conformal symmetry: Xi coordinates on Gr(4, n)/(C∗)n−1, i.e.
3n − 15 independent components of n ordered momentum twistors
Zi ∈ CP3 [Drummond,Henn,Sokatchev,Smirnov’06][Hodges’09]

pi ≡ xi+1 − xi , xi ∼ Zi−1 ∧Zi
(xi − xj)2 ∼ εIJKLZIi−1ZJi ZKj−1ZLj = det(Zi−1ZiZj−1Zj) ≡ ⟨i − 1ij − 1j⟩
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Planar N = 4 Amplitudes: The right functions

Evidence: A(L)
n,m=0,1 = multiple polylogarithms (MPL) of weight k = 2L

[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka’12][Duhr,Del Duca,Smirnov’09]...[GP’13’14]

fk is MPL of weight k if its differential obeys

dfk = ∑
α1

f
(α1)

k−1 d logφα1

⋮
df

(α1,...,αk−1)

1 = ∑
αk

f
(α1,...,αk)

0 d logφαk

▸ f
(α⃗)
k′ functions of weight k′, f

(α⃗)
0 ∈ Q

▸ φαi algebraic functions of independent variables: (symbol) alphabet.
[Goncharov,Spradlin,Vergu,Volovich’10]

Symbol S(fk) simultaneously takes account of all steps of recursion.

GP — Amplitude Singularities from Cluster Algebras & Tropical Geometry Introduction: Cluster Algebras and N = 4 SYM 7/25



Planar N = 4 Amplitudes: The right functions

Evidence: A(L)
n,m=0,1 = multiple polylogarithms (MPL) of weight k = 2L

[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka’12][Duhr,Del Duca,Smirnov’09]...[GP’13’14]

fk is MPL of weight k if its differential obeys

dfk = ∑
α1

f
(α1)

k−1 d logφα1

⋮
df

(α1,...,αk−1)

1 = ∑
αk

f
(α1,...,αk)

0 d logφαk

▸ f
(α⃗)
k′ functions of weight k′, f

(α⃗)
0 ∈ Q

▸ φαi algebraic functions of independent variables: (symbol) alphabet.
[Goncharov,Spradlin,Vergu,Volovich’10]

Symbol S(fk) simultaneously takes account of all steps of recursion.

GP — Amplitude Singularities from Cluster Algebras & Tropical Geometry Introduction: Cluster Algebras and N = 4 SYM 7/25



Planar N = 4 Amplitudes: The right functions

Evidence: A(L)
n,m=0,1 = multiple polylogarithms (MPL) of weight k = 2L

[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka’12][Duhr,Del Duca,Smirnov’09]...[GP’13’14]

fk is MPL of weight k if its differential obeys

dfk = ∑
α1

f
(α1)

k−1 d logφα1

⋮
df

(α1,...,αk−1)

1 = ∑
αk

f
(α1,...,αk)

0 d logφαk

▸ f
(α⃗)
k′ functions of weight k′, f

(α⃗)
0 ∈ Q

▸ φαi algebraic functions of independent variables: (symbol) alphabet.
[Goncharov,Spradlin,Vergu,Volovich’10]

Symbol S(fk) simultaneously takes account of all steps of recursion.

GP — Amplitude Singularities from Cluster Algebras & Tropical Geometry Introduction: Cluster Algebras and N = 4 SYM 7/25



Planar N = 4 Amplitudes: The right functions

Evidence: A(L)
n,m=0,1 = multiple polylogarithms (MPL) of weight k = 2L

[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka’12][Duhr,Del Duca,Smirnov’09]...[GP’13’14]

fk is MPL of weight k if its differential obeys

dfk = ∑
α1

f
(α1)

k−1 d logφα1

⋮
df

(α1,...,αk−1)

1 = ∑
αk

f
(α1,...,αk)

0 d logφαk

▸ f
(α⃗)
k′ functions of weight k′, f

(α⃗)
0 ∈ Q

▸ φαi algebraic functions of independent variables: (symbol) alphabet.
[Goncharov,Spradlin,Vergu,Volovich’10]

Symbol S(fk) simultaneously takes account of all steps of recursion.

GP — Amplitude Singularities from Cluster Algebras & Tropical Geometry Introduction: Cluster Algebras and N = 4 SYM 7/25



Planar N = 4 Amplitudes: The right functions

Evidence: A(L)
n,m=0,1 = multiple polylogarithms (MPL) of weight k = 2L

[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka’12][Duhr,Del Duca,Smirnov’09]...[GP’13’14]

fk is MPL of weight k if its differential obeys

dfk = ∑
α1

f
(α1)

k−1 d logφα1

⋮
df

(α1,...,αk−1)

1 = ∑
αk

f
(α1,...,αk)

0 d logφαk

▸ f
(α⃗)
k′ functions of weight k′, f

(α⃗)
0 ∈ Q

▸ φαi algebraic functions of independent variables: (symbol) alphabet.
[Goncharov,Spradlin,Vergu,Volovich’10]

Symbol S(fk) simultaneously takes account of all steps of recursion.

GP — Amplitude Singularities from Cluster Algebras & Tropical Geometry Introduction: Cluster Algebras and N = 4 SYM 7/25



Planar N = 4 Amplitudes: The right functions

Evidence: A(L)
n,m=0,1 = multiple polylogarithms (MPL) of weight k = 2L

[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka’12][Duhr,Del Duca,Smirnov’09]...[GP’13’14]

fk is MPL of weight k if its differential obeys

dfk = ∑
α1

f
(α1)

k−1 d logφα1

⋮
df

(α1,...,αk−1)

1 = ∑
αk

f
(α1,...,αk)

0 d logφαk

▸ f
(α⃗)
k′ functions of weight k′, f

(α⃗)
0 ∈ Q

▸ φαi algebraic functions of independent variables: (symbol) alphabet.
[Goncharov,Spradlin,Vergu,Volovich’10]

Symbol S(fk) simultaneously takes account of all steps of recursion.

GP — Amplitude Singularities from Cluster Algebras & Tropical Geometry Introduction: Cluster Algebras and N = 4 SYM 7/25



Planar N = 4 Amplitudes and Cluster Algebras
The right variables

What is the symbol alphabet describing An? For n = 6,7,
▸ variables am of a Grassmannian Gr(4, n) cluster algebra

[Golden,Goncharov,Spradlin,Vergu,Volovich’13]

Appear naturally as compactification of Gr(4, n) positive kinematic region
[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka]

Potential amplitude singularities when cluster variables am = 0,∞
⇓

Crucial information for computing An via amplitude bootstrap:
[SAGEX Review: Ch.5, GP’22]

An

▸ Finite number of MPL with
given alphabet & weight

▸ Identify An among them!
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Application: The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes
Evade Feynman diagrams by exploiting analytic structure

QFT Property Computation

Physical Branch Cuts A(L)
6 , L = 3,4

[Gaiotto,Maldacena,

Sever,Vieira]

[Dixon,Drummond, (Henn,)

Duhr/Hippel,Pennington]

Cluster Algebras S(A(3)
7,0)

[Golden,Goncharov,

Spradlin,Vergu,Volovich]

[Drummond,GP,

Spradlin]

Steinmann Relation A(5)
6 , S(A(3)

7,1 ,A
(4)
7,0)

[Steinmann] [Caron-Huot,Dixon,. . . ]

[Dixon,. . . , GP,Spradlin]

Cluster Adjacency S(A(4)
7,1)

[Drummond,Foster,

Gurdogan]

[Drummond,Foster,

Gurdogan, GP]

Extended Steinmann ⇔ A(6)
6 ,A(7)

6,0

Coaction Principle
[Caron-Huot,Dixon,Dulat,

McLeod,Hippel,GP]

See also S(A(2)
n ) → A

(2)
n , S(A7) → A7 work [Golden(,Paulos),Spradlin(,Volovich)]

[Dixon,Liu] [Golden,McLeod]
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Cluster Algebras [Fomin,Zelevinsky’01A]

They consist of

▸ A set of variables ai, the cluster (A-)coordinates

▸ Grouped into overlapping subsets {a1, . . . , ad} of rank d, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 cluster algebra
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Cluster Algebras [Fomin,Zelevinsky’01A]

They consist of

▸ A set of variables ai, the cluster (A-)coordinates

▸ Grouped into overlapping subsets {a1, . . . , ad} of rank d, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak
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▸ A set of variables ai, the cluster (A-)coordinates

▸ Grouped into overlapping subsets {a1, . . . , ad} of rank d, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

a′2 = (a1 + a3)/a2

and so on. . .

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak
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Cluster Algebras [Fomin,Zelevinsky’01A]

They consist of

▸ A set of variables ai, the cluster (A-)coordinates

▸ Grouped into overlapping subsets {a1, . . . , ad} of rank d, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 ≃ Gr(4,6) cluster algebra

▸ Further refinement: Include frozen variables ad+i that do not mutate

▸ Setting ad+i → 1 recovers previous definition
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Geometric Realization of Cluster Algebras [Fomin,Zelevinsky’01B’02]

▸ Finite cluster algebras classified by Dynkin diagrams

▸ Associate polytope to them: Clusters=vertices, mutations=edges

Example: A2

⊃ A1

a3 =
1 + a2
a1

a4 =
1 + a3
a2

= 1 + a1 + a2
a1a2

a5 =
1 + a1
a2

a6 = a1
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Geometric Realization of Cluster Algebras [Fomin,Zelevinsky’01B’02]

▸ Finite cluster algebras classified by Dynkin diagrams

▸ Associate polytope to them: Clusters=vertices, mutations=edges

Example: A2 ⊃ A1

a3 =
1 + a2
a1

a4 =
1 + a3
a2

= 1 + a1 + a2
a1a2

a5 =
1 + a1
a2

a6 = a1

▸ Obtain subalgebras by freezing =forbidding mutation of certain nodes
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The Dual Cluster Fan
Equivalent description of cluster polytope

Take normal vectors (of undetermined length) to maximal dimension faces

▸ Give rise to rays (half-lines emanating from origin) ↔ cluster variables

▸ Grouped in cones ↔ clusters

A2

A3

Collection of cones = (polyhedral) fan [Fomin,Zelevinsky’01B’02]
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Back to First Burning Question

For n ≥ 8, Gr(4,8) cluster algebra associated to An becomes infinite!

⇒ infinite potential symbol letters render bootstrap inapplicable.

As we will see, tropical Grassmannians Tr(4, n) provide a natural selection
rule yielding a finite subset of cluster variables/rational letters of An.
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The (Positive) Tropical Grassmannian [Speyer,Sturmfels’03][Speyer,Williams’03]

▸ Parametrize kinematics with Gr(4, n) initial cluster X -coordinates xi

⎛
⎜⎜⎜
⎝

1 0 0 0 −1 ∗ ∗ ∗
0 1 0 0 1 1 + x1 + x1x2 ∗ ∗
0 0 1 0 −1 −1 − x1 ∗ ∗ ∗
0 0 0 1 1 1 1 1

⎞
⎟⎟⎟
⎠
, xi =

∏
arrows j→i

aj

∏
arrows j←i

aj
.

▸ Tropicalize ⟨ijkl⟩: addition Ð→ minimum C∗ constants→ 0
multiplication Ð→ addition 0→∞

Example: ⟨1346⟩ = 1 + x1 + x1x2 Ð→min(0, x1, x1 + x2)

▸ Tropical hypersurface for ⟨1346⟩: (d−1)-dim.
surface in Rd where minimum attained twice
simultaneously
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The Positive Tropical Grassmannian Tr(4, n)

▸ Defined as union of tropical hypersurfaces for all ⟨ijkl⟩ [Speyer,Williams’03]

▸ Not parity invariant ⇒ May choose to tropicalize subset of ⟨ijkl⟩

For amplitudes, natural to consider minimal parity-invariant subset,

pTr(4, n): Tropicalize ⟨i − 1ij − 1j⟩ , ⟨ij − 1jj + 1⟩ for i = 1, . . . , n

Solution of linear (in)equalities, inherently finite-dim. May similarly define

▸ Rays = 1-dim. intersections of tropical hypersurfaces, start at origin

▸ Cones = regions in Rd where all min(. . .) continuous
= positive span of certain sets of d = 3n − 15 rays

▸ Fan = set of all cones
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Tropical Grassmannians and Cluster Algebras

▸ Finite Gr(k,n) cluster algebras triangulate (p)Tr(k,n)! [Speyer,Williams]

Illustration: Intersections of 3D cones with sphere ∼ locally screen plane

Finite case

Infinite case

⋅ ∶ (p)Tr +Gr rays

– ∶ (p)Tr +Gr boundaries

⋅ ∶ Gr rays

– ∶ Gr boundaries

▸ Triangulation used to compute generalized biadjoint scalar amplitudes
[Cachazo,Early,Guevara,Mizera’19] [Drummond,Foster,Gurdogan,Kalousios’19B]

Sometimes redundant (cluster but not tropical – in red) rays produced

Idea: Cluster algebra ∞ due to infinitely redundant triangulations!
Select finite subset of cluster variables corresponding to tropical rays

[Arkani-Hamed,Lam,Spradlin’19][Henke,GP’19][Drummond,Foster,Gurdogan,Kalousios’19B]
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Back to Second Burning Question
It’s an Irrational World

Unfortunately, we are not done yet:

▸ Cluster variables are always rational variables of ⟨ijkl⟩

▸ However square-root letters appear already at 1-loop integrals, e.g.

symbol letters contain
√

∆ijk`,

∆ijk` ≡ (fijfk`−fikfj`+fi`fjk)2−4fijfjkfk`fi`

with fij ≡ ⟨i i+1 j j+1⟩.

▸ Start at n ≥ 8, and letters containing
√

∆ijk` indeed observed in

explicit calculations of A(1)
8,1 ,A(2)

n,1 A
(3)
8,0

[Henn, Herrmann,Parra-Martinez’18][He,Li,Zhang’19’20][Li,Zhang’21]
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▸ However square-root letters appear already at 1-loop integrals, e.g.

symbol letters contain
√

∆ijk`,

∆ijk` ≡ (fijfk`−fikfj`+fi`fjk)2−4fijfjkfk`fi`

with fij ≡ ⟨i i+1 j j+1⟩.

▸ Start at n ≥ 8, and letters containing
√

∆ijk` indeed observed in

explicit calculations of A(1)
8,1 ,A(2)

n,1 A
(3)
8,0

[Henn, Herrmann,Parra-Martinez’18][He,Li,Zhang’19’20][Li,Zhang’21]
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Square Root Letters from Infinite Mutation Sequences

For sequence of mutations mapping quiver back to itself, e.g. A
(1)
1

obtain recursion relations among ai

, and [Canakci,Schiffler’16]

lim
i→∞

ai
ai−1

= a2
2a1
(1 + x1 + x1x2 +

√
(1 + x1 + x1x2)2 − 4x1x2)

where x1 = 1/a22, x1 = a21.

Idea: Include infinite mutation sequences to obtain generalized
cluster variables=square-root letters of amplitudes!

[Arkani-Hamed,Lam,Spradlin’19][Henke, GP’19][Drummond,Foster,Gurdogan,Kalousios’19B]
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Application: Gr(4,8) & Eight-particle Alphabet

Rational part:
▸ Start from initial cluster, mutate until redundant ray is reached
▸ Find 272 rational letters of degree up to 3 in ⟨ijkl⟩
▸ Includes the 196 A(3)

8,0 rational letters (which in turn contain the 172

A(2)
8,1 and 108 A(2)

8,0 rational letters resp.) [Li,Zhang’21]

Square-root part:

▸ (rank-2 affine) A
(1)
1 a subalgebra of Gr(4,8) cluster algebra!

Contains cluster (in certain X -coordinates):

x3 x2 x8

x1

x6 x4 x7

x9 x5

▸ Fine print: Limit value depends on cluster variables held frozen in
infinite mutation sequence
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The Role of Coefficients

There exists framework for simultaneously describing any choice of frozen
variables: [Fomin,Zelevinsky’06]

Coefficients yi =

∏
arrows j →i

aj

∏
arrows j ←i

aj
.

▸ Can think of them as fundamental, define mutation rules they obey.

▸ Simplest case: principal coefficients, to each unfrozen node a1,

a1 a2 y1 = a2
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Square-root Letters from Infinite sequences II

▸ We generalized A
(1)
1 sequence to principal coefficients

[Henke,GP’19][Reading’18]

▸ Possible to perform specifically for A
(1)
1 subagebra of Gr(4,8)

[Arkani-Hamed,Lam,Spradlin’19][Drummond,Foster,Gurdogan,Kalousios’19B]:
▸ Additionally, proposal to also take into account direction of approach

to limit in a particular fashion: [Drummond,Foster,Gurdogan,Kalousios’19B]

((((((((((((((((((((((((

Ray↔ generalized cluster variable correspondence

▸ Implies 2 pTr(4,8) limit rays → 18 square-root letters

▸ Indeed present in A(2)
8,1 ,A

(3)
8,0

[He,Li,Zhang’19][Li,Zhang’21]

Recently: A
(m)

1 infinite mutation sequence with general coefficients
⇒ Proposal for An alphabet in principle ∀n, explicitly for n = 9!

[Henke,GP’21]
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A
(1)
1 Sequences with General Coefficients

lim
i→∞

ai
ai−1

= a2
a1

K1 ±
√
K2

1 − 4K2

2(1 + ⊕̂ y1 ⊕̂ y1y2)
where

K1 = 1 + x1 + x1x2 , K2 = x1x2 , xi = yi
∏

arrows j→i

aj

∏
arrows j←i

aj
, j unfrozen ,

and

∏
i

f bii ⊕̂ ∏
i

f cii =∏
i

f
min(bi,ci)
i .

Also generalized to rank-(m + 1) A
(1)
m sequences.
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Generalized Cluster Variables for any A
(1)
1 Subalgebra of Gr(4, n)

Namely square-root letters for any amplitude multiplicity n

For any quiver containing A
(1)
1 with X -coordinates x1, x2,

x1 x2

obtain limiting letters:

φ0 ≡
2 −K1 +

√
K2

1 − 4K2

−2 +K1 +
√
K2

1 − 4K2

, φ̃0 ≡
2K2 −K1 +

√
K2

1 − 4K2

−2K2 +K1 +
√
K2

1 − 4K2

,

K1 = 1 + x1 + x1x2 , K2 = x1x2

We showed that particular choice is motivated by closely related scattering
diagrams approach. [Kontsevich,Soibelman’08][Gross,Siebert’07]...[Herderschee’21]
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Application: pTr(4,9) and Nine-particle Singularities

▸ 3078 cluster rays = rational letters of degree up to 6

Degree 1 2 3 4 5 6 7 8 9 10 Total

pTr(4,9) 117 576 1287 963 126 9 - - - - 3078

Tr(4,9) 117 576 1854 3159 2943 1926 1296 531 180 63 12645

▸ 324 limit rays → 2349 square-root letters

▸ Contains alphabet of A(2)
9,1 ! [He,Li,Zhang’20]

▸ Also new types of square roots, e.g. ∆ = A2 − 4B with

A = 1 − ⟨6789⟩⟨13(278)∩(246)⟩2

⟨1235⟩⟨1289⟩⟨3567⟩⟨1679⟩2
+ ⟨1267⟩⟨23(146)∩(178)⟩⟨46(278)∩(129)⟩

⟨1235⟩⟨1289⟩⟨3567⟩⟨1679⟩2
,

B = ⟨1267⟩ ⟨23 (146) ∩ (178)⟩ ⟨46 (278) ∩ (129)⟩
⟨1235⟩ ⟨1289⟩ ⟨3567⟩ ⟨1679⟩2

.

Rational letters and radicands ∆ also accounted for by tensor
diagrams, but not complete square-root letters [Ren,Spradlin,Volovich’21]

GP — Amplitude Singularities from Cluster Algebras & Tropical Geometry Predictions for 8- and 9-particle Singularities 24/25



Conclusions

Connection between cluster algebras and tropical Grassmannians
provides candidate singularities/letters of An in principle ∀n!

▸ Selects finite subset of ∞ cluster algebras ⇒ rational letters

▸ Limits of ∞ mutation sequences ⇒ square-root letters

▸ Explicitly worked out for n = 8,9

▸ Excellent agreement with fixed-order results & alternative approaches

Moving Forward

▸ Efficient bootstrap of new results

▸ First-principle derivation of these remarkable mathematical structures

▸ Relevance for realistic gauge theories
[Chicherin,Henn,GP;PRL 126 091603 (2021)][He,Li,Ma,Wu,Yang,Zhang’22]

▸ Generalization beyond multiple polylogarithms
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Open Questions

▸ 27 pTr(4,9) rays unaccounted for by A
(1)
1 infinite mutation sequences

▸ Evidence that Gr(4, n) cluster algebra does not entirely triangulate
pTr(4, n) with n ≥ 9 for any kind of such mutation sequence

▸ Likely related to its mutation-infinite class. E.g. rank-2 example,

a1 a2

Indeed appears as Gr(4,9) subalgebra
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Momentum Twistors ZI [Hodges’09]

▸ Represent dual space variables xµ ∈ R1,3 as projective null vectors

XM ∈ R2,4 , X2 = 0 , X ∼ λX.

▸ Repackage vector XM of SO(2,4) into antisymmetric representation

XIJ = −XJI = of SU(2,2)

▸ Can build latter from two copies of the fundamental ZI = ,

XIJ = Z[I Z̃J] = (ZI Z̃J −ZJ Z̃I)/2 or X = Z ∧ Z̃

▸ After complexifying, ZI transform in SL(4,C). Since Z ∼ tZ, can be
viewed as homogeneous coordinates on P3.

▸ Can show

(x−x′)2 ∝ 2X ⋅X ′ = εIJKLZI Z̃JZ ′KZ̃ ′L = det(ZZ̃Z′Z̃ ′) ≡ ⟨ZZ̃Z ′Z̃ ′⟩

▸ (xi+i − xi)2 = 0 ⇒Xi = Zi−1 ∧Zi
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The Kinematic Space of N = 4 Amplitudes and Grassmannians

▸ Can realize kinematic space as 4 × n matrix

(Z1∣Z2∣ . . . ∣Zn) ∈ Gr(4, n)/(C∗)n−1

modulo rescalings of the n columns and SL(4) transformations ⇒

dimension = 3n − 15.

▸ Closely related to Grassmannian Gr(4, n): The space of
4-dimensional planes passing through origin in n-dimensional space.

▸ Gr(4, n) cluster algebras provide compactification of positive region
of kinematics with ⟨ijkl⟩ > 0 for i < j < k < l.
[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka’12]
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