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Mergers of binary black holes produce
detectable gravitational waves

Inspiral Merger Ringdown
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Detailed prediction of waveform needed for precision studies
and tests of new physics. Techniques from amplitudes can help
in the inspiral phase.



Classical gravitational observables from
amplitudes

» Classical observables are analytically continued from
bound orbits to hyperbolic scattering orbits.  [Kaiin, Porto]

 Scatter two wavepackets with impact parameter b* and
measure the change in an observable (0.  (Kosower, Maybee, 0'Connel]

AO = (out| O|out) — (in| O|in)

« S-matrix relations: |out) = S|in), S =1+ iT.



Gravitational radiation

+
* Massless particles aren’t localized 34 0
» Classical wave in a pure state ~
coherent state
» Coherence characterizes statistics of 14

emitted particles: Poisson distribution



For the two-body problem, we consider particle statistics of
emitted gravitons and examine deviations from Poisson
distribution.

Aim: identify amplitudes that do/don’t contribute to the classical
limit.

Related work motivates the close study of 2-graviton emission at

tree Ievel- [Luna, Nicholson, O’Connell, White; Cristofoli, Gonzo, Moynihan, O’Connell, Ross, Sergola, White]

Amplitudes computed from a Lagrangian with an auxiliary field

On-shell recursion gives compact expressions, better suited for
analysis of the classical limit.



Classical observables: the KMOC formalism

[Kosower, Maybee, O’Connell]

|win) = Jd¢(P1aP2) et wA(POWE(PY) | P122)

where d®(p) = d*p 5(p* — m?) 0(pY),

.
and y(p) ~ m~'exp [— Y /le :

Separation of scales for classical scattering: £, <K ¢, < b.

Massive particles localized on classical trajectories as i — 0.



Coherent states for gravitons

[Cristofoli, Gonzo, Kosower, O’Connell]

Massless particles (e.g. gravitons) cannot be localized; single gravitons are not
classical.

Every quantum state of radiation (or density matrix) is a superposition of
coherent states. [Glauber]

But our in state |yj,) is pure, and the S matrix is unitary, so the out state is a

pure state. Thus it must be a single coherent state in the classical limit 7 — O.
[Hillery]

Coherent state for a graviton of momentum k and helicity o:

|af) = exp [aka;(k) — a:aa(k)] |0) [Glauber-Suradashan]

Promote to infinite superposition of momenta:

|a%) = exp ”dcb(k)(a(k)a;(k) - a*(k)aa(k))] 10)



Coherence and the Poisson distribution

Coherent state expanded in graviton-number states:

1 — 1 =
|a%) = exp <—5[d<1><k) | a®(k) |2) > ;“’[ |[d®(kya ()| k7. k7)

n=0 i=1

Probability of detecting n gravitons with helicity o

Py = 8,,exp <—[d<1><k) (k) |2> % <Jd<1><k> |a(k) |2>

Poisson statistics are equivalent to coherence of the state.



Counting emitted gravitons

[cf. Gelis, Venugopalan in QCD]

Probability of emitting n gravitons:

with an implicit IR cutoff.

.

(6 9)
Unitarity: Z l_’n
n=0



Graviton nhumber operator
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Graviton particle statistics

(0]
. Mean: poyt = (Wout | N Wout) = Z np,
n=0
* Variance:
2
R R 2 0 (0 0]
Zout = Wout | V) [wout) — <<Vfout|N|V/out>> = anpn - <Z”Pn>
n=0 n=0

e |In a Poisson distribution, Mean=Variance. Hence we define

Aout = Zout — Hout
and check whether this deviation vanishes. Also check higher
moments.



Graviton particle statistics

Expand in powers of the gravitational
coupling G.

P, = Z G2ntLi+L, Plng,Lz)

L] ’LZ
4rez. lewe!

Y
= 2G*P00
0.0),
O(G*)

Leading order: Agt

Product of 6-point tree amplitudes. Do these amplitudes survive in the
classical limit?

For the classical limit, we will examine 7 scaling and check whether
AAgyt — 0.



Computing amplitudes

* The Einstein-Hilbert action suffers from a proliferation of vertices with
gauge dependence.

* With an auxiliary field and explicit gauge fixing, a compact form of the
tree-level Lagrangian is obtained with only cubic interactions.

[Cheung, Remmen]

* We add minimally coupled scalars for the massive particles.



1 1
— 4 a Ab a Ab cd a bc

where 6* =, /[—gg“;
4 1 ab 1 —1N,,2,02
Smatier = — ), | d*x S0 0.0ty + ) = det(e™)mid;

j=A,B
two ScdafS

1

ZLor = =S ed % (\/—gg“) 0, (x/—ggbd>

With the massive scalars, interaction vertices do proliferate beyond cubic ones, but
are under control at lower orders.

Interactions through order h>: hhh, hhA, hAA, hpp, hhopp, hhhpe.



4-point amplitude

14 34

« n = (0. No graviton emission.
 Irrelevant for mean, variance, etc.; ingredient for recursive constructions.
. Qi .
Single Feynman diagram e
IK

> (1
dP(14,2°,34,4°) = — > (—t (=m3 —mg+s) += (—m3 —mj + s)2 — mjmé)



5-point amplitude

A
14 3

* 7 Feynman diagrams

» Prefer a compact formula, but with only one massless particle, there is
no BCFW shift

* Introduce a new equal-mass shift



BCFW Recursion

[RB, Cachazo, Feng, Witten]

« Consider a tree-level amplitude as a function of momenta, &/, ({pi}).

Introduce a complex variable z through a momentum shift,
pi=pi+ar;

e If momentum is conserved, Zirl- = (), and momenta stay on shell,

ﬁlz = ml.z, then the shifted function &, ({p;}) maintains properties of an
amplitude.

 Further, ifall 7; - = 0, then propagators depend linearly on z, so

A, ({P;}) has only simple poles. If the residue at infinity (boundary
term) vanishes, then we can apply Cauchy’s residue theorem.



BCFW Recursion

. ﬂE a2 _ o)+ ZRes[ ”(Z)]
7

< =z <
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Convenient momentum shift with spinor variables:

P = 13)131" = 13)%(13 | +2[41Y"
P = 14)41" = (14) - 2I3)41".

Result:
4 34 3
AP, 24,37 4%) = — ix? mal 2] =
(34)(s31 — m3)(s3p — m3)
[4]1]3)*

V1A, 24,37 4%) = ix? .
4 534(531 — m3)(s3, — m3)




The equal-mass shift

Since the masses are just parameters in the procedure, we can relax
the on-shell condition: f)lz = nAlez Nonzero masses can vary, provided
that any equal masses remain equal in the shift.

For our 5-point amplitude, use

ps=15I51=(5)+z (1 -3)|5DI5|
p1=p;+23]|5]5]
153=P3—Z1|5][5|

P} =p?— 5113151 = m + 21513115 = .

Vanishing of boundary term is hard to prove. We checked it with FD.



5-point factorization diagrams




5-point result

0) (1A oB oA 4B i —pa - p2[5[135]? [5|KaKp|5]* — 8[5[13]5]*
Aé ) (17,27,37,47,5%) = ?<l824(851 —m?)(s53 — m%) 16513524
(m% + m%)[5]13[5](2(s13 — s24)[5]13]5] + [5| K B|5) [5| K A K B5])
8(s51 —m?)(ss3 —m?)(ss2 — m%)(s54 — M%)
K4 - Kp(sa — s13)[5|13|5] (4s24[5[42|5] — [5| K a|5)[5| KaK5|5])
N 32513504 (551 — M%) (853 — M%) (852 — M%) (550 — M)
 Ka - Kp[5|42]5]([5|Kp[5)[51 K aKp[5] — 4(s13 + s24)[5[13]5])
8s13524 (852 — M%) (54 — M%)
K4 - Kp[5|Kal5)[5|Kp|5) ([5|KaKp|5]° - 8[5[42[5]%)
64513(s51 — m%) (s53 — m?)(s52 — m%)(s54 — M%)
+ (tr(KaKpK K p) + 2[5|Ka|5)” + 2[5| K [5)” — 2575 — 2s5,)
» ( [5] K al5) 51K B|5)[513]5][5]42]5]
64513524 (851 — mi)(853 - m?q)(552 — m2B)(354 — mQB)
[5]42]5](2(s13 — s24)[5]42|5] — [5|KA|5>[5|KAKB|5])):| + [(1’3’ Ka) & (2’4, KB)})-

64813(851 — m124)(853 — m124)(852 — m2B)(854 — mQB)




The 6-point amplitude

Usual BCFW shift on graviton pair.

Vanishing of boundary term verified from FD.



The classical limit

« KMOC told us how to set up the states. They also provide a detailed
prescription for taking the classical limit.  [Kosower, Maybee, 0'Connell

 Study how all quantities scale with 7, then take the limit 2 — 0.

(N Py’z - Momentum transfers g;, w;

Yi—q/Z

Pa—ql2 +w,

 Wavenumbers

pg—q/2

5+ 2
" X\« Coupling k — K/\/%




Classical limit of the tree amplitudes

Implement explicit scaling: ¢ = g/h, w; = w;/h, lgl. = k;/h, Kk = K‘/\/%

=2
- q
2= m? - 2L

Replace velocities on classical trajectories: p; = m:y; ; 1

Jr

Naively expected behavior from Feynman diagrams:
ds=COnF+ COnF+0(n?)

dg=CON 0+ CON>+COn*+0(h™).

C¥=0, CP#0,

Leading orders are suppressed: O — c®_ g C© £ 0
1 2 ’ 3 '



Classical limit of the 5-point amplitude

. n=landds=COr3+0 (h—%>

» Leading order matches a known result.  [Luna, Nicholson, O’Connell, White]
» The scaling of the energy of emitted radiation must remain finite, so the

leading-order scaling for a contribution to the classical limit is
compensated by precisely #°>*" for each amplitude.

« Probabilities should be treated as 7P, .

. The 5-point tree does give a classical contribution: lim hPl(O’O) ~ O(1).
h—0



Classical limit of the 6-point amplitude

e n=2,and A, = C§6)h_4 + 0 (h_3).

. No classical contribution: lim hPZ(O’O) = 0.
h—0

» Leading order is new, and provides the first check of coherence.

lim 7 Agys = 0.



Coherence at higher orders

« At tree-level, we see the origin of 7 suppression from the BCFW shift,

so we conjecture: lim &/, ~ A7>72. Hence only the 5-point
h—0

amplitude provides a classical contribution.

. Conjecturally then, lim AP = 0 forn > 2.
h—0

» Consistent with expectations of coherence. If coherence holds to

higher orders in G and L, then there must be further relations among
amplitudes, in the classical limit.



Coherence at higher orders

« Higher (factorial) moments: [ = (wlN(N— D...N=m+1)] W).
- For a Poisson distribution, '™ = ™.

« Thus we check the vanishing of A" =T — ;™ \We have already
done m = 2.

A — Z Z G2Hn+Li+L, n! Pn(LpLz)

—m)!
LI (n—m)!

Z Z Z G2m+2 nk+L(")+L(k)]H [ L(J)L(f) ] |

. L(l) L(rn) L(l) L(m)



Relations among amplitudes

Up to O(G),

lim AA@ = lim (G6(2P(2 0 4 2P0 z>)>
h—0 h—0

+1lim 7 <G7(2P<3 D4 2P0) + 6P + 6P + 6P ”)
h—0

6 (1,1 _ (0,0)y2 7 (1,2) 2,1 _ (0,1) p(0,0) _ (1,0) p(0,0)
+1im | GOQPYY = (POVP) + G P 4 2D = 2P VP00 — 2p(LOPO0) .

lim #A® = lim A (G7(6P<0 2 4 6P 4 6P 1>))
h—0 h—0

Thus, coherence implies 1lim 7 <G7(6P(O 2) 4 6P(2 0 4 6P(1 1))> =
n—0

We make one more assumption, lim AP0 = lim APOL) = 0 forn > 2.

. . ) h—0 h—0
[cf. Cristofoli, Gonzo, Moynihan,

O’Connell, Ross, Sergola, White]



Relations among amplitudes

. lim hP3(1’1) = 0: the 7-point 1-loop amplitude is classically
h—0
suppressed.

1
HpLD — 5 pO.0N2
2 2 ( I ) ash — 0:

o h(Pz(l,Z) + P2(2,1)) — h(Pl(O,l)Pl(0,0) + Pl(l,O)Pl(0,0))

6- and higher-point amplitudes are related to 5-point at lower loop level.




Summary & Outlook

“Amplitudes” techniques have been useful for precision calculations in the study of
gravitational waves.

Main result: classical suppression of a 6-pt tree amplitude as 4 — 0. Evidence for
coherence of final semiclassical radiation state in binary scattering.

Introduced an equal-mass shift for on-shell recursion.

Conjectured higher-order relations in this framework, such that the 4- and 5-point
amplitudes encode all information of the final state.

Future directions:

» explore higher-order relations, and connections to classical soft theorems
* nonperturbative effects may spoil coherence

» spin/tidal effects may spoil coherence

* resummation of radiation reaction effects is desirable



