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Mergers of binary black holes produce 
detectable gravitational waves

Detailed prediction of waveform needed for precision studies 
and tests of new physics. Techniques from amplitudes can help 
in the inspiral phase. 



Classical gravitational observables from 
amplitudes

• Classical observables are analytically continued from 
bound orbits to hyperbolic scattering orbits.


• Scatter two wavepackets with impact parameter  and 
measure the change in an observable .


• S-matrix relations: ,   .

bμ

!

|out⟩ = S | in⟩ S = 1 + iT

Δ! = ⟨out |! |out⟩ − ⟨in |! | in⟩

[Kälin, Porto]

[Kosower, Maybee, O’Connell]



Gravitational radiation

• Massless particles aren’t localized


• Classical wave in a pure state ~ 
coherent state


• Coherence characterizes statistics of 
emitted particles: Poisson distribution



• For the two-body problem, we consider particle statistics of 
emitted gravitons and examine deviations from Poisson 
distribution.


• Aim: identify amplitudes that do/don’t contribute to the classical 
limit.


• Related work motivates the close study of 2-graviton emission at 
tree level. 


• Amplitudes computed from a Lagrangian with an auxiliary field


• On-shell recursion gives compact expressions, better suited for 
analysis of the classical limit.

[Luna, Nicholson, O’Connell, White; Cristofoli, Gonzo, Moynihan, O’Connell, Ross, Sergola, White]



Classical observables: the KMOC formalism

,


where ,


and .


Separation of scales for classical scattering: .


Massive particles localized on classical trajectories as .

|ψin⟩ = ∫ dΦ(p1, p2) eib⋅p1/ℏ ψA(p1)ψB(p2) |p1p2⟩

dΦ(p) = d4p δ(p2 − m2) θ(p0)

ψ(p) ∼ m−1 exp [− p ⋅ v
ℏℓc/ℓ2w ]

ℓc ≪ ℓw ≪ b

ℏ → 0

[Kosower, Maybee, O’Connell]



Coherent states for gravitons
• Massless particles (e.g. gravitons) cannot be localized; single gravitons are not 

classical. 


• Every quantum state of radiation (or density matrix) is a superposition of 
coherent states.


• But our in state  is pure, and the S matrix is unitary, so the out state is a 
pure state. Thus it must be a single coherent state in the classical limit .


• Coherent state for a graviton of momentum  and helicity : 



• Promote to infinite superposition of momenta: 

|ψin⟩
ℏ → 0

k σ
|ασ

k ⟩ = exp [αka†
σ(k) − α*k aσ(k)] |0⟩

|ασ⟩ = exp [∫ dΦ(k)(α(k)a†
σ(k) − α*(k)aσ(k))] |0⟩

[Glauber]

[Glauber-Suradashan]

[Hillery]

[Cristofoli, Gonzo, Kosower, O’Connell]



Coherence and the Poisson distribution

Coherent state expanded in graviton-number states:





Probability of detecting  gravitons with helicity :





Poisson statistics are equivalent to coherence of the state.

|ασ⟩ = exp (− 1
2 ∫ dΦ(k) |ασ(k) |2 )

∞

∑
n=0

1
n! ∫

n

∏
i=1

[dΦ(ki)ασ(ki)] |kσ
1 . . . kσ

n⟩

n σ′�

Pσ′ �
n = δσσ′� exp (−∫ dΦ(k) |ασ(k) |2 ) 1

n! (∫ dΦ(k) |ασ(k) |2 )
n



Counting emitted gravitons

Probability of emitting  gravitons:





with an implicit IR cutoff.


Unitarity: .

n

P̄n = 1
n! ∑

σ1,...,σn=± ∫ dΦ(p3)dΦ(p4)∫ dΦ(k) |⟨kσ1
1 . . . kσn

n p3p4 |S |p1p2⟩ |2

∞

∑
n=0

P̄n = 1

[cf. Gelis, Venugopalan in QCD]



Graviton number operator
.        Mean: .N̂ = ∑

σ=± ∫ dΦ(k) a†
σ(k)aσ(k) μout = ⟨ψout | N̂ |ψout⟩ =

∞

∑
n=0

n Pn
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Graviton particle statistics

• Mean: 


• Variance: 




• In a Poisson distribution, Mean=Variance. Hence we define                
                                                                           

and check whether this deviation vanishes. Also check higher 
moments.

μout = ⟨ψout | N̂ |ψout⟩ =
∞

∑
n=0

n Pn

Σout = ⟨ψout | (N̂)2 |ψout⟩ − (⟨ψout | N̂ |ψout⟩)
2

=
∞

∑
n=0

n2 Pn − (
∞

∑
n=0

n Pn)
2

Δout = Σout − μout



Graviton particle statistics
Expand in powers of the gravitational 
coupling .
G

Pn = ∑
L1,L2

G2+n+L1+L2P(L1,L2)
n

Leading order: .  


Product of 6-point tree amplitudes. Do these amplitudes survive in the 
classical limit?


For the classical limit, we will examine  scaling and check whether 

Δout
!(G4)

= 2G4P(0,0)
2

ℏ
ℏΔout → 0.

treelevel
t d



Computing amplitudes

• The Einstein-Hilbert action suffers from a proliferation of vertices with 
gauge dependence. 


• With an auxiliary field and explicit gauge fixing, a compact form of the 
tree-level Lagrangian is obtained with only cubic interactions. 


• We add minimally coupled scalars for the massive particles.

[Cheung, Remmen]






where ;








With the massive scalars, interaction vertices do proliferate beyond cubic ones, but 
are under control at lower orders.


Interactions through order : .

SGR = 1
16πG ∫ d4x [−(Aa

bcAb
ad − 1

3 Aa
acAb

bd) σcd + Aa
bc∂aσbc]

σab = −ggab

Smatter = − ∑
j=A,B

∫ d4x [ 1
2 σab∂aϕj∂bϕj + 1

2 − det(σ−1)m2
j ϕ2

j ]
ℒGF = − 1

2 ηcd ∂a ( −ggac) ∂b ( −ggbd)

h3 hhh, hhA, hAA, hϕϕ, hhϕϕ, hhhϕϕ

twoscalars



4-point amplitude

• . No graviton emission.


• Irrelevant for mean, variance, etc.; ingredient for recursive constructions.


• Single Feynman diagram


n = 0

2(0)
4 (1A, 2B, 3A, 4B) = − iκ2

2t ( 1
2 t (−m2

A − m2
B + s) + 1

2 (−m2
A − m2

B + s)2 − m2
Am2

B)
K NIG



5-point amplitude

• 7 Feynman diagrams


• Prefer a compact formula, but with only one massless particle, there is 
no BCFW shift


• Introduce a new equal-mass shift



BCFW Recursion

• Consider a tree-level amplitude as a function of momenta, . 
Introduce a complex variable  through a momentum shift, 

.


• If momentum is conserved, , and momenta stay on shell, 
, then the shifted function  maintains properties of an 

amplitude. 


• Further, if all , then propagators depend linearly on , so 
 has only simple poles. If the residue at infinity (boundary 

term) vanishes, then we can apply Cauchy’s residue theorem. 

2n ({pi})
z

̂pi = pi + zri

Σiri = 0
̂p2
i = m2

i 2n({ ̂pi})

ri ⋅ rj = 0 z
2n({ ̂pi})

[RB, Cachazo, Feng, Witten]



BCFW Recursion

• 


•

∮γ∞

dz
2n(z)

z
= 2n(0) + ∑

I
Res
z=zI

[ 2n(z)
z ]

∑
I

Res
z=zI

[ 2n(z)
z ] = − ∑

I
∑
σ=±

2L({ ̂pL}, ̂Pσ
I )

i
P2

I − m2
I

2R(− ̂P−σ
I , { ̂pR})



Convenient momentum shift with spinor variables:





Result:


̂pa ·b
3 = |3⟩a[3̂ |

·b = |3⟩a([3 | + z[4 | )
·b,

̂pa ·b
4 = | 4̂⟩a[4 |

·b = ( |4⟩ − z |3⟩)a[4 |
·b .

2(0)
4 (1A, 2A,3+,4+) = − iκ2 m4

A[34]3

⟨34⟩(s31 − m2
A)(s32 − m2

A) ,

2(0)
4 (1A, 2A,3−,4+) = iκ2 [4 |1 |3⟩4

s34(s31 − m2
A)(s32 − m2

A) .



The equal-mass shift
• Since the masses are just parameters in the procedure, we can relax 

the on-shell condition: . Nonzero masses can vary, provided 
that any equal masses remain equal in the shift.


• For our 5-point amplitude, use 




• 


• Vanishing of boundary term is hard to prove. We checked it with FD.

̂p2
i = m̂2

i

̂p5 = | 5̂⟩[5̂ | = ( |5⟩ + z (1 − 3) |5])[5 |
̂p1 = p1 + z 3 |5][5 |
̂p3 = p3 − z 1 |5][5 |

̂p2
1 = p2

1 − z[5 |13 |5] = m2
A + z[5 |31 |5] = ̂p2

3 .



5-point factorization diagrams



5-point result



The 6-point amplitude

Usual BCFW shift on graviton pair. 


Vanishing of boundary term verified from FD.

I Iz3 EIA 3A or 2B y



The classical limit
• KMOC told us how to set up the states. They also provide a detailed 

prescription for taking the classical limit.


• Study how all quantities scale with , then take the limit .ℏ ℏ → 0

[Kosower, Maybee, O’Connell]

           
pA − q/2

pB + q/2

pB + q/2 + w2

pA − q/2 + w1

pA + q/2

pB − q/2

• Momentum transfers 


• Wavenumbers                            



• Coupling 

qj, wj

q̄ = q/ℏ, w̄j = wj/ℏ, k̄i = ki/ℏ

κ → κ/ ℏ



Classical limit of the tree amplitudes
• Implement explicit scaling: , 


• Replace velocities on classical trajectories: 


• Naively expected behavior from Feynman diagrams: 




• Leading orders are suppressed:  

q̄ = q/ℏ, w̄j = wj /ℏ, k̄i = ki/ℏ κ → κ/ ℏ

pj = m̃jvj, m̃2
j = m2

j − ℏ2 q̄2

4

25 = C(5)
1 ℏ− 9

2 + C(5)
2 ℏ− 7

2 + ! (ℏ− 5
2 ),

26 = C(6)
1 ℏ−6 + C(6)

2 ℏ−5 + C(6)
3 ℏ−4 + ! (ℏ−3) .

C(5)
1 = 0, C(5)

2 ≠ 0,
C(6)

1 = C(6)
2 = 0, C(6)

3 ≠ 0.



Classical limit of the 5-point amplitude

• , and .


• Leading order matches a known result.


• The scaling of the energy of emitted radiation must remain finite, so the 
leading-order scaling for a contribution to the classical limit is 
compensated by precisely  for each amplitude.  


• Probabilities should be treated as .


• The 5-point tree does give a classical contribution: .

n = 1 25 = C(5)
2 ℏ− 7

2 + ! (ℏ− 5
2 )

ℏ5/2+n

ℏPn

lim
ℏ→0

ℏP(0,0)
1 ∼ !(1)

[Luna, Nicholson, O’Connell, White]



Classical limit of the 6-point amplitude

• , and .


• No classical contribution: .


• Leading order is new, and provides the first check of coherence.         

.

n = 2 26 = C(6)
3 ℏ−4 + ! (ℏ−3)

lim
ℏ→0

ℏ P(0,0)
2 = 0

lim
ℏ→0

ℏ Δout
!(G4)

= 0



Coherence at higher orders

• At tree-level, we see the origin of  suppression from the BCFW shift, 
so we conjecture: . Hence only the 5-point 
amplitude provides a classical contribution.


• Conjecturally then,  for . 


• Consistent with expectations of coherence. If coherence holds to 
higher orders in  and , then there must be further relations among 
amplitudes, in the classical limit.

ℏ
lim
ℏ→0

24+n ∼ ℏ−3− n
2

lim
ℏ→0

ℏP(0,0)
n = 0 n > 2

G L



Coherence at higher orders
• Higher (factorial) moments: .


• For a Poisson distribution, .


• Thus we check the vanishing of . We have already 
done 


Γ(m) = ⟨ψ | N̂(N̂ − 1)…(N̂ − m + 1) |ψ⟩

Γ(m) = μm

Δ(m) = Γ(m) − μm

m = 2.

Δ(m) = ∑
n

∑
L1,L2

G2+n+L1+L2
n!

(n − m)! P(L1,L2)
n

− ∑
n1,…,nm

∑
L(1)

1 ,…,L(m)
1

∑
L (1)

2 ,…,L (m)
2

G2m+∑k [nk + L(k)
1 + L (k)

2 ]∏
j [njP

(L( j)
1 ,L ( j)

2 )
nj ] .



Relations among amplitudes
Up to , 




Thus, coherence implies .


We make one more assumption, .


!(G7)
lim
ℏ→0

ℏΔ(2) = lim
ℏ→0

ℏ (G6(2P(2,0)
2 + 2P(0,2)

2 ))
+ lim

ℏ→0
ℏ (G7(2P(3,0)

2 + 2P(0,3)
2 + 6P(2,0)

3 + 6P(0,2)
3 + 6P(1,1)

3 )
+ lim

ℏ→0
ℏ [G6(2P(1,1)

2 − (P(0,0)
1 )2) + G7(2P(1,2)

2 + 2P(2,1)
2 − 2P(0,1)

1 P(0,0)
1 − 2P(1,0)

1 P(0,0)
1 )],

lim
ℏ→0

ℏΔ(3) = lim
ℏ→0

ℏ (G7(6P(0,2)
3 + 6P(2,0)

3 + 6P(1,1)
3 ))

lim
ℏ→0

ℏ (G7(6P(0,2)
3 + 6P(2,0)

3 + 6P(1,1)
3 )) = 0

lim
ℏ→0

ℏP(L,0)
n = lim

ℏ→0
ℏP(0,L)

n = 0 for n ≥ 2
[cf. Cristofoli, Gonzo, Moynihan, 
O’Connell, Ross, Sergola, White]



Relations among amplitudes
• : the 7-point 1-loop amplitude is classically 

suppressed.


•
   as :


  6- and higher-point amplitudes are related to 5-point at lower loop level.

lim
ℏ→0

ℏP(1,1)
3 = 0

ℏP(1,1)
2 = 1

2 ℏ(P(0,0)
1 )2

ℏ(P(1,2)
2 + P(2,1)

2 ) = ℏ(P(0,1)
1 P(0,0)

1 + P(1,0)
1 P(0,0)

1 )
ℏ → 0



Summary & Outlook
• “Amplitudes” techniques have been useful for precision calculations in the study of 

gravitational waves.


• Main result: classical suppression of a 6-pt tree amplitude as . Evidence for 
coherence of final semiclassical radiation state in binary scattering.


• Introduced an equal-mass shift for on-shell recursion.


• Conjectured higher-order relations in this framework, such that the 4- and 5-point 
amplitudes encode all information of the final state. 


• Future directions:

• explore higher-order relations, and connections to classical soft theorems

• nonperturbative effects may spoil coherence

• spin/tidal effects may spoil coherence

• resummation of radiation reaction effects is desirable

ℏ → 0


