# **RISC Software GmbH**

by Fritz Robeischl

1st SAGEX Scientific Workshop 30 July 2019

Softwarepark 35, 4232 Hagenberg, Austria







### About RISC Software GmbH

working group for industrial applications at RISC Institute 1989



Foundation
RISC Software GmbH
(Prof. Bruno Buchberger)

1992

RISC Software GmbH 100%-subsidiary of JKU 2004

1990

Foundation of Softwarepark Hagenberg under the management of RISC



1995

RISCSW specializes in software for logistics and production planning

2008

Incorporation of the department of **Medical Informatics** and equity stake of State Upper Austria







Basic Research in Symbolic Computation

Chair: Prof. Peter Paule Founder(1987): Prof. Bruno Buchberger 60 Members (including PhD Students)





Software Development
Applied Research
(Algorithmic Mathematics)
Transfer of Technology

Employees: 70 (Headcount, 2018)

Betriebsleistung: about. 5,3 Mio Euro (2018)

Ownership structure: 80% Johannes Kepler University Linz and 20% Upper Austrian Research GmbH (State Upper Austria)







### About RISC Software GmbH





Hagenberg:

2.600 inhabitants

1.700 students at University of Applied Sciences

1.240 employees in Software Park





# Key Figures 2018

















Selected references and international cooperation partners









### RISC Software GmbH - Units













### Selected references

### CALUMMA OMEDA

Ontology-based medical data analysis



### **BURNCASE 3D**

Objective diagnosis and documentation on virtual patients



### Virtual Aneurysm

Development of a haptic simulator for neurosurgical clipping operations on brain arteries











# Topic: Implementation of a perceptual loss function

#### Context

- deep neural networks are state-of-the-art for many medical segmentation tasks
- one core building block of the DNN is the loss function
- currently very simple loss functions (e.g. DICE-loss) are employed
- research area: medical image segmentation using deep learning

#### Idea

 more advanced (perceptually meaningful) loss functions (e.g. based on distance transform) might improve training (speed and accuracy of final model)

#### Your task ...

- derive and implement a perceptual loss function using Tensorflow, Python and C++
- Evaluate the influence of the loss function on training for the task of aortic vessel segmentation for existing 2D / 3D U-Nets





# Topic: 3D medical image data augmentation

#### Context

- in medical image segmentation labeled training data is a scarce resource
- generation of labels is costly, however a lot of unlabeled data is available
- a lot of unlabeled data is available
- **research areas**: non-rigid registration, generative adversarial networks (GANs), one-shot medical image segmentation

#### Idea

- starting with a single labeled 3D image dataset x generate many deformations of x that are realistic (e.g. represent natural deformation of organs)
- use the deformations to generate "new" labeled 3D images for training

#### Your task ...

- implement a non-rigid deformation method (using methods from nonrigid registration or GANs) using Tensorflow, Python and C++
- apply the deformation method to generate new labeled training samples
- Evaluate the influence of data augmentation on training for the task of aortic vessel segmentation







# Topic: Nonlinear Elasticity Simulation

#### Context

- Real-time simulation of realistic deformation of organ tissues
- Finite element method (FEM)

#### **Current state**

 Corotational FEM for tetrahedral volume elements implemented in C++ and CUDA

#### Your task

- Implement and compare other FE algorithms, e.g.
  - Nonlinear (corotational) shell elements
  - Alternative fast and stable volumetric methods (Kugelstadt, Chao, Marchesseau,...)

# Thank you for your attention.

# See you in Hagenberg!

RISC Software GmbH Softwarepark 35, 4232 Hagenberg, Austria





