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Outline

Post-Minkowskian (PM) physics (|hµν | << 1 , v
c ∼ 1) has

been studied in General Relativity by more than 70 years

The PM scattering angle can be used to construct improved
gravitational wave templates
Scattering amplitudes naturally provides this observable: can
we improve the method to high PM order?
Formula connectingM and θPM to all orders (no potentials)

Main result

θPM =
∞∑
k=1

2b
k!

∫ ∞
0

du (∂b2)k
(
M̃cl .(r , p∞)r2

p2
∞

)k 1
r2

r =
√
u2 + b2
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The two-body problem in General Relativity is given by

Rµν −
1
2
gµνR =

8πGN

c4 Tµν , u̇µa = −Γµαβ(gµν)uαa u
β
a

.... no general solution is known!

If we split the dynamics into several regimes of motion, we can
use the EOB approach to provide an approximate solution
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Improving the EOB (2016)

Damour has proven that the fully relativistic scattering angle
with arbitrary masses, θPM , could be used in the EOB to
improve gravitational waves templates (1609.00354)

Classical physics ∆pµa = −1
2

∫ +∞
−∞ dσa∂

µgαβ(xa)pαa p
β
a

Covariant approaches (Kosower et al.): 〈ψ|∆P̂µa |ψ〉
Potential based approaches:

MPM VPM θPM

State of the art

Bern et al. has computed θPM ∼ G 3
N with a VPM based approach,

but the method is hard to implement at higher PM orders
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1 Compute the scattering amplitude of a 2→ 2 process between
two scalar massive particles exchanging gravitons (C.M. frame)

p1 p3

p4p2

<latexit sha1_base64="9jZdKXrQUNruzT8aXYXAg30ZUcM="></latexit>

=M(~p, ~p ′) , |~p| = |~p ′|

2 Calculate a post-Minkowskian potential VPM fromM
(e.g. Lippman-Schwinger equation / EFT approaches)

ṼPM(~p, ~p ′) =M(~p, ~p ′)−
∫
~n

M(~p, ~n) ṼPM(~n, ~p ′)

Ep − En + iε
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3 The fully relativistic scattering angle θPM is given by

θPM = −2 ∂
∂L

∫ +∞

rmin

dr

√
p2(r)− L2

r2 − π

p2(r) is the curve in the phase space (p, r) which solves

H(r , p(r)) = E , pr (rmin) = 0

Issues with p2(r) and rmin

The computation of p2(r) seems to follow no specific rule

p2

2µ
+

GNµM

r
= E vs.

2∑
i=1

√
p2 + m2

i + VPM(r , p) = E

rmin solves a polynomial equation (in θPM divergences appear)
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A new map fromMPM to θPM

We can apply the implicit function theorem,

p2(r) = p2
∞+VPM(r , p∞)−2EξVPM(r , p∞)∂p2VPM(r , p∞)+...

The L-S equations in position space can be rewritten as a
differential equation for a fully relativistic potential andM,

M̃cl .(r , p) = VPM(r , p)− 2EξVPM(r , p)∂p2VPM(r , p) + ...

QCD meets gravity 2016, Damour

p2(r) = p2
∞ + M̃cl .

tree(r , p∞) + M̃cl .
1−loop(r , p∞) + ...
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Derivation of p2(r)

The quantization of the phase space (r , p) can be done as follow

∑
i

√
p2 + m2

i + VPM = E

PM quantized system

Ĥ =
∑
i

√
p̂2 + m2

i + V̂PM

ṼPM =M−MBorn

p2 = p2
∞ + GN f1(E)

r + ....

Schroedinger like-system{
Ĥ = p̂2 − V(r ,E )

V(r ,E ) = GN f1(E)
r + ...

Ṽ =M−MS
Born

Main result (see also Khalin and Porto)

V = M̃cl . ⇒ p2(r) = p2
∞ + M̃cl .(r) , ∀Gn

N
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The post-Minkowskian scattering angle θPM becomes

θPM
2

= − ∂

∂L

∫ +∞

rmin

dr

√
p2
∞ + M̃cl .(r , p∞)− L2

r2 −
π

2

...but the evaluation of rmin leads to divergences (Partie finie)

We can remove rmin in favour of the impact parameter b
obtaining a series of convergent integrals (1910.09366)

Main result

θPM =
∞∑
k=1

2b
k!

∫ ∞
0

du (∂b2)k
(
M̃cl .(r , p∞)r2

p2
∞

)k 1
r2

r =
√
u2 + b2
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This series corrects the known Bohm’s formula

θPM = θ(1) + ... , θ(1) =
2b
p2
∞

∫ ∞
0

du ∂b2M̃cl .(r , p∞)

It directly connectsM and θPM to all orders. It is easy to
compute and leads to a simple polynomial relation

M̃cl . =
∞∑
n=1

Gn
Ncn(E )

rn
⇒ θPM =

∑
n

(
GN

b

)n

f (c1, c2, ...)

=
GN

b
c1 +

(
GN

b

)2πc2
4

+

(
GN

b

)3(
c3 +

c1c2
2
− c3

1
4
)

+ ...
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Conclusions

MPM → VPM → θPM

Presence of gauge dependent quantities as VPM and rmin

The quantity p2(r) required an additional calculation
Hard to implement at high PM orders

MPM → θPM

Only gauge independent quantities: no more VPM or rmin

The quantity p2(r) is simply M̃cl .(r)

Simple formula valid to all PM orders

Future directions
Massless limit (work in progress with O’Connell and Gonzo)
Arbitrary dimensions D (Damgaard, Di Vecchia, Heissenberg)
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