

Perturbative Simplicity in lower dimensions

Queen Mary University of London, 8/11/2019

ESR: Davide Polvara

Supervisor: Patrick Dorey

Institute: Durham University

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 764850 (SAGEX).

Background and Projects

- I did my masters in the University of Milano Bicocca.
- Theoretical Physics background: QFT, general relativity and string theory.
- Topics of interest: Integrability in QFT, Toda theories, defects, bootstrap and the Lagrangian approach to computing S-matrix elements.

Achieved results

- Publication in JHEP (1902.10690) in collaboration with S. Penati, "Quantum anomalies in $A_r^{(1)}$ Toda theories with defects".
- Based on the paper, I wrote an outreach article on the SAGEX blog, "Particles-defects interactions: do special walls in scattering theory survive the quantisation?"

Future projects and outgoing publications

Axiomatic approach

Exact S-matrices for integrable quantum field theories in 2d can be found using the bootstrap.

Many results obtained in the past 30 years.

Perturbation theory

Integrability manifests itself in a surprising cancellation of Feynman diagrams contributing to non-allowed processes.

We proved this phenomenon at tree-level for simply laced Toda models connecting on-shell singular diagrams to planar projections of higher-dimensional roots.

Future expected results: extending the argument to loop level.

The secondment at Maple (23/09/2019- 20/12/2019)

Goals and perspectives:

- Based on a pre-existing C-algorithm for Feynman diagrams generation (1209.0949) we expect to write a similar one in Maple language.
- Finding bugs and implementing the Maple package Physics:-FeynmanDiagrams.

Training

Lectures attended in Durham University: supersymmetry, non-perturbative physics, conformal field theories, scattering amplitudes.

Schools, workshop and conferences attended:

- SAGEX meeting on outreach activities (Humboldt University Berlin, 7-8 February 2019)
- Young Researchers Integrability School and Workshop (Vienna, 10-16 February 2019)
- SAGEX welcome meeting and first soft skills training sessions (Durham University, 1-2 April 2019).
- Amplitudes (Trinity College Dublin, July 2019)
- DESY Summer School in Gauge and String Theory (22-26 July 2019)
- SAGEX workshop on soft-skills and outreach training (29 July- 2 August 2019)

Outreach and connections

- I am helping to organize the outreach exhibition that will be presented at the end of the project.
- In collaboration with Patrick Dorey and Herbert Gangl I am preparing an outreach game. The purpose of the game is to connect divergences of Feynman diagrams in Toda models with polygon tilings creating a "puzzle" for the public.
- I have had discussions with my mentor Tristan McLoughlin regarding the research developed until now.
- During the school and the other SAGEX events there has been the possibility to speak with the other ESRs about the respective projects.
- At the moment I see my future in academia. I am hoping to find a postdoc position.

Thank you

