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Deep inelastic scattering
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Deep inelastic scattering
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C(x, Q?) Wilson coefficient, f;(x, @) parton densities
e The f;(x,Q3) cannot be computed perturbatively.

o Their @2 dependence can be computed perturbatively, however.
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P;(x,Q?) - splitting function



e We want to solve analytically!
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o £(Q% Q2) and K(Q?,Q3) are the scheme-invariant evolution
operators.

1See also: J. Bliimlein, V. Ravindran, W.L. van Neerven, Nucl. Phys. B586 (2000) 349; J. Bliimlein and A.
Guffanti, Nucl.Phys.Proc.Suppl. 152 (2006) 87.



Example — non-singlet evolution operator
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@ Measure as(Mz) from the scaling violation of the structure functions of
deep-inelastic scattering directly.

@ The measurement is widely free of systematic and theory errors because the
quantities involved depend on o only, given precision input for m: and my,.

@ No fit of the parton densities,
o Measure the input distributions F5 (x, @), 9:F5 (x, @3) experimentally.
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@ One goal is also to produce a software library that can ultimately
work with experimental data.

o It will also contain the asymptotic heavy flavor effects for the first
time, which are sufficient for Q2 > 25 GeV?.



The challenges

@ The evolution kernels are given by harmonic sums
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and their analytic continuation® for complex N.
@ Use factorial series for [N| — o and recurrences for N — N — 1.

o Factors of (—1)" — project on even N (unpolarized case) or odd N
(polarized case).

@ Perform inverse Mellin transformation numerically as last step (one
contour integral).

2. Bliimlein, Comput.Phys.Commun. 180 (2009) 2218.



Current status of the code

@ The code can currently compute harmonic sums up to weight 5
numerically for complex N and perform the Mellin inversion.

@ The coded splitting functions and Wilson coefficients were checked
against the results in x space obtained with the package
HarmonicSums? .

Next steps:
@ Testing of the evolution over parametrized input structure functions.
@ Testing the heavy flavor corrections.
@ Error propagation of physical input distributions.
@ Application to experimental data to extract os.
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Next Steps in the project:

@ Calculation of the small x limit of massive 3-loop operator matrix
elements.

@ Renormalization of massive 3-loop polarized operator matrix and
associated analytic loop calculations.



