A new search for dark matter axions using quantum technologies

Jack A. Devlin

Imperial College London

DMUK meeting 22/9/2022

Imperial College London

Science and Technology Facilities Council

Who we are

QuEPA Quantum Enhanced Particle Astrophysics

Project started 1/9/2022

Local Team

Penning trap expert

Richard

Support Mike Tarbutt Quantum Science and Fundamental Physics

Overview

Figure adapted from:

G. Irastorza and J. Redondo, Prog. Part. Nucl. Phys. **102**, 89 (2018). Additions from https://cajohare.github.io

An axion haloscope

Converter
$$m_a \rightarrow \nu_a = m_a c^2 / h$$

 $P_{out} = \frac{\hbar \rho_{DM} g_{a\gamma\gamma}^2}{c^3 \mu_0 m_a} \times B^2 V_m Q$

<u>Desirable</u>

- High volume factor
- Q-factor up to $Q_a = 10^6$
- High B field compatible
- Easy to adjust frequency
- Broad tuning range
- Feasible

Why hard at higher masses/frequencies?

→ Typically $V_m \propto \frac{1}{\nu_a^{3}}$, Q $\propto \frac{1}{\nu_a^{2/3}}$ (for copper)

Other axion-photon converter efforts above 30 GHz

https://cajohare.github.io/AxionLimits/docs/ap.html

Dielectric cavities ORGAN QDM lab (Univ. Western Australia) Lead by Dr. Michael Tobar

TEM_{00q} Fabry-Perot ORPHEUS Rybka et al.

Plasma haloscope

ALPHA Frank Wilczek et al.

"Magnetized mirrors"...

BRASS	University of Hamburg
BREAD	Cambridge/Fermilab, higher m _a

.. with dielectric boost

MADMAX Big effort at DESY, lower m_a initially

Many more new ideas between 5-30 GHz

Our converter concept

See ORPHEUS for alternative F-P TEM_{00q} concept G. Rybka et al., Phys. Rev. D **91**, 011701 (2015)

Performance

<u>R&D program:</u>

- 1) Which coating technology is best?
- 2) Test mirror construction techniques
- 3) How close to the instability limit can we reach?

Making a better detector

S. K. Lamoreaux, et al., Phys. Rev. D 88, 035020 (2013)

A. Ghirri et al., Sensors **20(14)**, 4010 (2020) A. V. Dixit, et al., Phys. Rev. Lett. **126** 141302 (2021)\

AMO Quantum technology for Single Photon Counting

An old idea: CARRACK I & II Rydberg atoms

Counting photons with a single trapped electron

M. Tada et al., Nuclear Physics B (Proc. Suppl.) **72** 164 (1999) M. Tada et al., Physics Letters A **349 6** 488 (2006)

S. Peil and G. Gabrielse Phys. Rev. Lett. **83**, 1287 (1999) D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, PRA **83**, 052122 (2011)

Our approach

Moving endcaps allows TE_{11x} modes to be matched to cyclotron frequency for efficient detection

<u>R&D goals</u>

- Application of frequency measurement techniques compatible with on resonant cavity
- Medium-Q (25,000) cavity.

Some realistic numbers

Axion production cavity assumptions

Parameter	Value	Why?
Q	250,000	Calculated Bragg mirror
В	7 T	Modest large bore Nb- Ti magnet field
Mirror diameter	15 cm	Standard semiconductor substrate size
Mirror radius of curvature	1 m	$g_{max} = 0.9975$ $w_{max} = 1.5 \text{ cm} = d/10$ $\Delta f_{min} \frac{\varrho}{f} = 4 * 10^3$
In-coupling losses	50 %	Modest mode mismatch

Photon counting assumption

Parameter	Value	Why?
Q	25,000	Cavity wavemeter/electron g- factor
Missed fraction	5 %	< 1 ppm axial stability

Other applications – millicharged particles

Look for collisions between millicharged particles (mCPs) and electrons that change the magnetron mode

Status and short-term goals

Project started 1/9/2022

£125 k for developing Fabry Perot cavity+ 5-year University Research Fellowship for JAD

Imperial College London

40 m² lab space in Ion Trapping Group Use of facilities in Dept. of Engineering Equipment sharing with Centre for Cold Matter

Science and Technology Facilities Council £500k fEC "Developing Quantum Technologies for Fundamental Physics" call for cryocooler (300 mK) + magnet and personnel

2-year R&D goals

2-year physics goal

mCP search

Fabry-Perot cavity

- Cavity coating
- Construct cryogenic test cavity

Penning trap

- Construct trap
- Trap and detect single electrons
- Measure magnetron heating rate
- Demonstrate principle of photon counting

Thank you for listening

We're recruiting: https://www.imperial.ac.uk/ion-trapping/positions/1 PhD

Science and Fundamental Physics