Imperial College London

The search for invisibly decaying Higgs bosons at the CMS experiment Vukasin Milošević, on behalf of the VBF H->Inv. team

Imperial College London, 10.04.2019.

IMPERIAL COLLEGE LONDON, 10.04.2019.

Overview

Analysis motivation VBF specific introduction

1

2

3

4

Vukasin Milosevic, Imperial College London

Analysis methods

- Background control
- Selection requirements

Creation of analysis specific trigger

Structure and performance

The road towards the first limit

First data/MC distributions for 2017 data

- Invisible decays of the Higgs boson, as part of the "Higgs portal model" scenarios, are a good way of searching for new physics
 - Higgs boson a mediator between SM particles and ones that belong to the DM sector
- **Detection requires for the Higgs boson to recoil against a visible system:**
 - qqH : Higgs boson is produced in a vector boson fusion topology (VBF)
 - VH: Higgs boson production with a vector boson (V = Z or W)
 - •ggH: Higgs boson produced via gluon fusion.

- Invisible decays of the Higgs boson, as part of the "Higgs portal model" scenarios, are a good way of searching for new physics
 - Higgs boson a mediator between SM particles and ones that belong to the DM sector
- Detection requires for the Higgs boson to recoil against a visible system.
 - *qqH : Higgs boson is produced in a vector boson fusion topology (VBF)
 - VH: Higgs boson production with a vector boson (V = Z or W)
 - **ggH:** Higgs boson produced via gluon fusion.

п

- Invisible decays of the Higgs boson, as part of the "Higgs portal model" scenarios, are a good way of searching for new physics
 - Higgs boson a mediator between SM particles and ones that belong to the DM sector
- **Detection requires for the Higgs boson to recoil against a visible system:**
 - qqH : Higgs boson is produced in a vector boson fusion topology (VBF)
 - ♦ VH: Higgs boson production with a vector boson (V= Z or W)
 - •ggH: Higgs boson produced via gluon fusion.

JOOD 2000 g g п 2000

- Invisible decays of the Higgs boson, as part of the "Higgs portal model" scenarios, are a good way of searching for new physics
 - Higgs boson a mediator between SM particles and ones that belong to the DM sector
- **Detection requires for the Higgs boson to recoil against a visible system:**
 - qqH : Higgs boson is produced in a vector boson fusion topology (VBF)
 - VH: Higgs boson production with a vector boson (V = Z or W)
 - *ggH: Higgs boson produced via gluon fusion.

Background control

The SM backgrounds:

- *V*+jets: *Z*(*vv*)+jets and *W*(*lv*)+jets
 where the charged lepton is unidentified
- originating from QCD multijet production processes.
- Diboson and top quark processes
 estimated from simulation.
- V+Jets: Dedicated control regions in data
 Z or W boson associated with the same dijet topology
- This means that we can have the following scenarios:
 $^{*}Z \rightarrow e+e-$, Z → μ+μ−, W → ev, W → μv

The search for invisibly decaying Higgs bosons at the CMS experiment

Selection requirements

Missing transversal energy (MET):

$$E_{T,miss} = -\left|\sum_{i} \vec{p}_{T,i}\right|$$

Existence of MET can imply presence of "invisit

 Antipie presence of "invisit"

Vukasin Milosevic, Imperial College London

	Variable	$\sqrt{s} = 13 \text{ TeV}$
ble" objects	$p_{T}^{j_{1}}$	> 80 GeV
	$p_{T}^{j_{2}}$	> 40 GeV
	E_T^{miss}	> 250 GeV
	$min\Delta\phi(\vec{p}_T^{miss}, j)$	> 0.5
	$\Delta\eta(j_1,j_2)$	> 4.0
	$\Delta \phi(j_1, j_2)$	< 1.5
	m_{jj}	> 1300 GeV

Selection requirements

Missing transversal energy (MET):

$$E_{T,miss} = -\left|\sum_{i} \vec{p}_{T,i}\right|$$

Vukasin Milosevic, Imperial College London

Introduction: Current results

The latest analysis, containing data collected during 2016, has been submitted to "Physics Letters B" [*]

The search for invisibly decaying Higgs bosons at the CMS experiment

High-Level Trigger: Introduction

• Up until now relied solely on generic SUSY trigger based around missing energy

• Upgraded CMS Level-1 (L1) trigger system:

Detailed probing of topologies of interest

- Allows separation of events by:
 - Jet transverse momenta (pt)
 - Dijet mass (mjj)

Building upon the L1 strategy, new VBF based trigger:

Loosens the missing energy requirement Covers additional population of events

The search for invisibly decaying Higgs bosons at the CMS experiment

Vukasin Milosevic, Imperial College London

Preliminary gain in signal acceptance ~10% Allows us to probe a new part of the phase space

The search for invisibly decaying Higgs bosons at the CMS experiment

Increasing the sensitivity: A first look at 2017 data

Vukasin Milosevic, Imperial College London

The search for invisibly decaying Higgs bosons at the CMS experiment

Increasing the sensitivity: A first look at 2017 data

Vukasin Milosevic, Imperial College London

The search for invisibly decaying Higgs bosons at the CMS experiment

Conclusion: Plans for the legacy paper

- Plans for the VBF analysis:
 - Usage of new VBF based triggers

 - Better trigger performance: looser selection requirements on MET Moving from a single bin to a multi bin fit for obtaining the final result
- Legacy publication containing the entire Run 2 information A collaboration between several UK CMS teams (more details can be seen in a given by Esh -Link-)
 - Parallel study of all modes (VBF, ttH, VH and ggH):
 - Built-in orthogonality
 - Sharing background estimation methods
 - Using the same systematics wherever possible

Analysis is currently being prepared with the end of summer 2019 as its goal

Thank you for your time!

Backup

Conclusion: Future of the analysis

- The main idea behind High Luminosity LHC (HL-LHC) is to significantly increase the number of proton-proton collisions per second
- Effects on the CMS experiment:
 - Increased radiation
 - Large in-time event pileup
- Proposed plan: the High Granularity Calorimeter (HGCal):
 - Replacing the present endcap calorimeters
 - Uses a combination of transverse and longitudinal segmentation for all calorimetry components
- $^{\bullet}$ The VBF H → inv. is interesting due to its MET dependence Full performance study published as a part of the <u>HL-LHC YR</u>
- Ongoing studies: Trigger requirements for Run 3

The search for invisibly decaying Higgs bosons at the CMS experiment

2017 data analysis

- Idea to use the new "FAST" framework, a software used by a collaboration between several UK CMS teams for the "Combined Higgs to Invisible Project - CHIP"
 - Plan is to combine all hadronic analyses (within UK)
 - Modular approach allows us to build analysis specific computations by specifying which parts of the code we need/ adding new custom-made packages
 - * nanoAOD friendly approach: Complete inclusion of nanoAODtools and the new Ntuple format
 - Removal of ROOT dependency: Binning the data into data frames instead of creating a new "mediator" tree after the selection
 - Configuration files: Summarising all the variables (binning, ranges, selections) needed for studies in one YAML configuration file

B

$$N_{expected}^{SR} = \frac{\sigma(Z \to \nu\nu)}{\sigma(Z \to ll)} \cdot \frac{\epsilon^{SR}}{\epsilon^{CR}} \cdot (N_{data}^{CR} - N_{bkg}^{CR})$$

$$\epsilon^{SR} = \frac{\sigma(Z \to \nu\nu, \text{EWK}) \cdot \frac{N_{MC}^{SR}(\text{EWK})}{N_{gen}(M_Z, \text{EWK})} + \sigma(Z \to \nu\nu, \text{QCD}) \cdot \frac{N_{MC}^{SR}(\text{QCD})}{N_{gen}(M_Z, \text{QCD})}}{\sigma(Z \to \nu\nu, \text{EWK}) + \sigma(Z \to \nu\nu, \text{QCD})}$$

$$\epsilon^{CR} = \frac{\sigma(Z \to ll, \text{EWK}) \cdot \frac{N_{MC}^{CR}(\text{EWK})}{N_{gen}(\text{EWK})} + \sigma(Z \to ll, \text{QCD}) \cdot \frac{N_{MC}^{CR}(\text{QCD})}{N_{gen}(\text{QCD})}}{\sigma(Z \to ll, \text{EWK}) + \sigma(Z \to ll, \text{QCD})}$$

$$\epsilon^{R} = \frac{\sigma(Z \to \nu\nu, \text{EWK}) \cdot \frac{N_{MC}^{SR}(\text{EWK})}{N_{gen}(\text{M}_{Z}, \text{EWK})} + \sigma(Z \to \nu\nu, \text{QCD}) \cdot \frac{N_{MC}^{SR}(\text{QCD})}{N_{gen}(\text{M}_{Z}, \text{QCD})}}{\sigma(Z \to \nu\nu, \text{EWK}) + \sigma(Z \to \nu\nu, \text{QCD})}$$

$$\epsilon^{CR} = \frac{\sigma(Z \to ll, \text{EWK}) \cdot \frac{N_{MC}^{CR}(\text{EWK})}{N_{gen}(\text{EWK})} + \sigma(Z \to ll, \text{QCD}) \cdot \frac{N_{MC}^{CR}(\text{QCD})}{N_{gen}(\text{QCD})}}{\sigma(Z \to ll, \text{EWK}) + \sigma(Z \to ll, \text{QCD})}$$

$$N_{QCD}^{SR}(m_{jj}) = \left(N_{Data}^{CR}(m_{jj}) - \sum_{i}^{bkg} N_{i}^{CR}(m_{jj})\right) \cdot r(m_{jj})$$

• **Region-A**: min- $\Delta \phi(j, E_T^{\text{miss}}) < 0.5$ and $100 < E_T^{\text{miss}} < 160$ GeV. • **Region-B**: min- $\Delta \phi(j, E_T^{\text{miss}}) > 0.5$ and $100 < E_T^{\text{miss}} < 160 \text{ GeV}$ • **QCD-CR**: min- $\Delta \phi(j, E_T^{\text{miss}}) < 0.5$ and $E_T^{\text{miss}} > 250$ GeV. • **Signal region**: min- $\Delta \phi(j, E_T^{\text{miss}}) > 0.5$ and $E_T^{\text{miss}} > 250$ GeV.

 $r = \frac{\min \Delta \phi(\text{jet}, E_{\text{T}}^{\text{miss}}) > 0.5}{\min \Delta \phi(\text{jet}, E_{\text{T}}^{\text{miss}}) < 0.5}$

The V+jets background yields are determined using a maximum-likelihood fit, performed simultaneously across all CRs and the SR. The likelihood function is defined as:

$$\begin{split} \mathcal{L}(\mu, \kappa^{\nu\overline{\nu}}, \boldsymbol{\theta}) &= \prod_{i} \mathrm{P}\left(d_{i} \Big| B_{i}(\boldsymbol{\theta}) + (1 + f_{i}(\boldsymbol{\theta})_{\mathrm{Q}})\kappa_{i}^{\nu\overline{\nu}} + R_{i}^{Z}(1 + f_{i}(\boldsymbol{\theta})_{\mathrm{E}})\kappa_{i}^{\nu\overline{\nu}} + \mu S_{i}(\boldsymbol{\theta})\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{\mu\mu} \Big| B_{i}^{\mu\mu}(\boldsymbol{\theta}) + \frac{\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{\mu\mu}(\boldsymbol{\theta})_{\mathrm{Q}}} + \frac{R_{i}^{Z}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{ee}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{ee} \Big| B_{i}^{ee}(\boldsymbol{\theta}) + \frac{\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{ee}(\boldsymbol{\theta})_{\mathrm{Q}}} + \frac{R_{i}^{Z}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{ee}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{\mu} \Big| B_{i}^{\mu}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta})_{\mathrm{Q}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{\mu}(\boldsymbol{\theta})_{\mathrm{Q}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{\mu}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{e} \Big| B_{i}^{e}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta})_{\mathrm{Q}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{Q}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{\mu}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{e} \Big| B_{i}^{e}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta})_{\mathrm{Q}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{Q}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{e} \Big| B_{i}^{e}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta})_{\mathrm{Q}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{Q}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{e} \Big| B_{i}^{e}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta})_{\mathrm{Q}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{e} \Big| B_{i}^{e}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta})_{\mathrm{Q}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{e} \Big| B_{i}^{e}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta})_{\mathrm{R}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{e} \Big| B_{i}^{e}(\boldsymbol{\theta}) + \frac{R_{i}^{Z}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}}\right) \\ &\prod_{i} \mathrm{P}\left(d_{i}^{e} \Big| B_{i}^{e}(\boldsymbol{\theta}) + \frac{R_{i}^{Z}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\nu\overline{\nu}}}{R_{i}^{e}(\boldsymbol{\theta})_{\mathrm{E}}} + \frac{R_{i}^{Z}f_{i}(\boldsymbol{\theta})_{\mathrm{E}}\kappa_{i}^{\mu}}{R_{i}^{e}(\boldsymbol{\theta$$

(1)

