

THE DARKSIDE-20k EXPERIMENT

Daria Santone

Royal Holloway, University of London APP and HEPP Annual Conference London Imperial Collage, 10th April 2019

OUTLINE

- The DARKSIDE-20k overview
- Progress with the detector development:
 - Underground Argon (URANIA & ARIA)
 - TPC
 - Photo-electronics
- Background free experiment:
 - Nuclear recoil
 - Veto design
- High-mass sensitivity

GLOBAL ARGON DARK MATTER PROGRAM

- Darkside-50
- DEAP-3600
- miniCLEAN
- ArDM

DS-20k goal :

 Background free < 0.1 event in 100 t x yr

DS-20k

 High mass WIMP sensitivity

https://indico.cern.ch/event/765096/contributions/3295671/attachments/ 1785196/2906164/DarkSide-Argo_ESPP_Dec_17_2017.pdf

DARKSIDE-20k

- 50 t of Underground Argon (UAr) in the TPC
- 8920 Silicon-photomultiplier (SiPMs) for the TPC readout
- Gd-loaded acrylic shell .
- 600 t of Atmospheric Argon (AAr) around the acrylic shell
- 3000 SiPMs for the veto readout
- Copper cage
- Protodune like cryostat

UNDERGROUND ARGON (UAr)

³⁹Ar is produced in atmospheric argon by **cosmogenic activation**. Beta emitter with endpoint at 565 keV and half life of 269 y. Nominal **activity of atmospheric argon: ~ 1 Bq/kg.**

URANIA/ARIA

Extraction of UAr from Colorado -> 99.9% purity

Air Products Heim D0% V Mo% Heim Heim

Purification of UAr: 10 kg/d obtaining a ³⁹Ar depletion factor 10

TPC

- Dual phase Liquid Argon volume: **50 t** of UAr
- Ultra pure acrylic vessel
- Photosensor module on the top and bottom of the TPC
- Photosensor modules and vessel immersed in the AAr
- Drift field =200 V/cm
- Reflector panel (DEAP like):
 - Acrylic in order to minimize the neutron background
 - ESR foils in order to minimize Cerenkov background
- ESR reflectivity 98% at 420 nm
- High Light Yield: 9 pe/keVee (200 V/cm)

Bottom photosensor module

PHOTOSENSOR

8

- Silicon photomultiplier (SiPMs):
 - Particle detector efficiency PDM = 40%
 - Dark Current rate DCR = 0.1 Hz/mm²
 - Time Resolution: 10 ns
- Radio-purity up an order on magnitude than PMTs
- Photo-detector Module (PDM): 24 SiPM->6x4 array
- Motherboard: 25 PDMs arranged in 5x5 matrix

PDM

Two first Motherboard are successfully assembled

PHOTOSENSOR PERFORMANCE

	DS-20k requirement	SiPM tile (PDM)	
Surface	5x5cm ²	24cm ² prototype 25cm ² final PDM	1
Power dissipation	<250mW	~170mW	1
PDE	>40%	$50\% \cdot \epsilon_{geom} = 45\%$	1
Noise Rate	<0.1cps/mm ²	0.004cps/mm^2	1
Time Resolution	O(10ns)	16ns	1
Dynamic Range	>50	~100	1

BACKGROUND

Electron recoil: γ and e

- Solar pp neutrino
- ²³⁸U and ²³²Th decay chain: the principal comes form ²²²Rn
- 39 Ar β -decay
- 85 Kr β -decay

ER reduction for DS-20k demonstrated already in DEAP-3600 arxiv:1902.04048

Nuclear recoil: neutrons, α

- ²³⁸U and ²³²Th contaminations of the detector material
- Cosmogenic interaction due the cosmic ray
- (α,n) reaction in the detector material
- Spontaneous fission decays

Same recoil of the WIMP

NEUTRON RECOIL

The principal source of neutrons background comes from the photo-electronics system

Improvement in the background reduction:

- Cuts on multi-scatter events
- Veto system

THE VETO DESIGN

The veto consists in:

- An inner buffer of AAr surrounding the TPC (40 cm)
- A passive acrylic shell (10 cm) loaded with 1-2% of Gadolinium (neutron capture)
- An outer buffer of AAr (40 cm)
- Faraday cage (copper cage) for optical insulation and electrical shield

THE VETO DESIGN

How is neutron capture detected?

- Neutron capture on Gd produce a high energy γ (8 MeV)
- Scintillation light produced in the γ emission is detected by sensor placed on the two side of the plastic shell
- Optical readout ->3000 SiPMs disposed with a different coverage:
 - 2000 inside
 - 1000 outside⁻

THE VETO DESIGN

How does veto system work?

Neutron background rejection:

- Veto window is open after each NR event in the TPC (veto window = 800 μs)
- If the NR in the TPC is in coincidence with the signal in the veto-> rejection of the event in the TPC

THE VETO DESIGN (2)

- The inner and outer Argon buffers are divided in sectors in order to reduce the ³⁹Ar pile-up
- Each sector consists in an acrylic panel filled with AAr
- The wall of each sector is covered by wavelength shifter TPB and reflector. The reflector improves the light collection for a better rejection of ³⁹Ar

VETO PERFORMANCE

WIMP-like events:

- Single recoil
- Energy range: 7.5 keVee<energy<50 keVee
- Fiducial Volume:
 30 cm away the TPC walls

Neutron capture in the veto for WIMP-Like event

	fraction of captures[%]
Gd	49%
Ar	26%
Н	15%
TPC SiPM Cu	7%

Gd	Fraction of Untagged event[%] 5.5%	fraction of un-tagged WIMP-like event after a veto cuts requiring a 600 keV in the inner buffer
Ar	9.1%	OR 600 keV in the outer buffer
Н	57.7%	Total fraction of un-tagged WIMP
TPC SiPM Cu	22%	like event: 10%

Light yield:

- 2.2 pe/keV per sector inner
- 1.2 pe/keV per sector outer

40 sector inside 40 sector outside

DS-20k SENSITIVITY

https://indico.cern.ch/event/765096/contributions/3295671/attachments/1785196/2906164/DarkSide-Argo_ESPP_Dec_17_2017.pdf

CONCLUSIONS

- DS-20k is a global Argon Dark Matter experiment which aim to to reach a high mass WIMP sensitivity in a background-free operation
- Progress in the detector development:
 - Two motherboard were successfully assembled
 - Ongoing improvement in the background rejection and veto system
- Data-taking will start in 2022

BACKUP

VETO PERFORMANCE: ONGOING STUDIES

- Optimize the number of sector
- Incorporate sector multiplicity into background rejection
- Exploring different TPB-reflector coating:
 - TPB-Acrylic-Reflector
 - TBP-Acrylic-Lar-Reflector

- Veto inefficiency of order of $10\% \rightarrow \frac{\text{Fraction of WIMP-like n event failing the veto cuts}}{\text{Fraction of WIMP-like n event failing the veto cuts}}$
- Reduce the ³⁹Ar accidental rate

Fraction of WIMP-like n event in the TPC

Electron recoil

ArXiv:1707.08145

ER reduction factor is >3 x 10⁹, more than sufficient to maintain a background-free operation

22

 f_{200} = fraction of S1 light in the first 200 ns f_{150} = fraction of S1 light in the first 150 ns (DEAP) f_{120} = fraction of S1 light in the first 120 ns f_{90} = fraction of S1 light in the first 90 ns (DS-50)

Pulse shape discrimination: f_{200} to reach a 90% of NR detection-efficiency

