Searching for the Invisible using cross-section ratios

Vasilis Konstantinides UK IOP HEPP Meeting April 2019

FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES

Motivation

• Dark Matter candidates could be produced at the LHC.

• Can be inferred via momentum imbalance in the transverse plane if produced in association with SM objects (e.g. jets).

Dark Matter + jets production has an identical signature to Z → vv̄ + jets process (or W → lv + jets with out-of-acceptance lepton).

The idea: Visible regions and Ratio construction

- SM diagrams similar to the invisible decay of the Z boson:
 - $Z \rightarrow l^+l^- + jets$
 - $W \rightarrow l v + jets$
- Measure two ratios in addition to the individual processes:

$$R^{\text{miss}} = \frac{p_{\text{T}}^{\text{miss}} + \text{jets}}{p_{\text{T}}^{\text{miss}} + l + \text{jets}} \qquad R^{\text{miss}} = \frac{p_{\text{T}}^{\text{miss}} + \text{jets}}{l^{+}l^{-} + \text{jets}}$$

- Select leptons and then mark as invisible.
- Presence of BSM physics with a p_T^{miss} + jets signature will lead to deviations from the ratio as predicted by the SM.

The idea: Visible regions and Ratio construction

- SM diagrams similar to the invisible decay of the Z boson:
 - $Z \rightarrow l^+l^- + jets$
 - $W \rightarrow l v + jets$
- Measure two ratios in addition to the individual processes:

$$R^{\text{miss}} = \frac{p_{\text{T}}^{\text{miss}} + \text{jets}}{p_{\text{T}}^{\text{miss}} + l + \text{jets}} \qquad R^{\text{miss}} = \frac{p_{\text{T}}^{\text{miss}} + \text{jets}}{l^{+}l^{-} + \text{jets}}$$

- Select leptons and then mark as invisible.
- Presence of BSM physics with a p_{T}^{miss} + jets signature will lead to deviations from the ratio as predicted by the SM.

- Cancellations of most theoretical and experimental uncertainties in the ratio.
- Ratio is measured differentially.
- Results are corrected for detector effects.

Double Ratio: p_{T}^{miss}

- Differential cross-sections of the 0lepton Signal Region and 1-muon Control Region as a function of p_T^{miss} in the monojet-like phase space.
- Multijet background not included in the simulation
 Data excess in first bin.

$$R^{\text{miss}} = \frac{p_{\text{T}}^{\text{miss}} + \text{jets}}{p_{\text{T}}^{\text{miss}} + \mu + \text{jets}}$$

• Theoretical uncertainties not included.

Double Ratio: p_{T}^{miss}

Double Ratio: m_{jj}

- Differential cross-sections of the 0lepton Signal Region and 2-muon Control Region as a function of m_{jj} in the VBF phase space.
- Good agreement between measured and predicted ratio.

$$R^{\text{miss}} = \frac{p_{\text{T}}^{\text{miss}} + \text{jets}}{\mu^{+}\mu^{-} + \text{jets}}$$

 Poor modelling of the m_{jj} distribution in both the numerator and denominator largely cancels out in the ratio.

Double Ratio: $\Delta \Phi_{jj}$

- Differential cross-sections of the 0lepton Signal Region and 1-muon Control Region as a function of $\Delta \Phi_{jj}$ in the VBF phase space.
- Multijet background not included in the simulation
 Data excess at edges of distribution.

$$R^{\text{miss}} = \frac{p_{\text{T}}^{\text{miss}} + \text{jets}}{p_{\text{T}}^{\text{miss}} + \mu + \text{jets}}$$

- Poor modelling of the dΦ_{jj} distribution in both the numerator and denominator largely cancels out in the ratio.
- Theoretical uncertainties not included.

Summary and future plans

- Measuring a Signal region with a p_T^{miss} + jets final state signature.
- Constraining it with Control regions containing visible objects.
- Results are corrected for detector effects.
- Optimising regions using the 2016 dataset will be using full dataset collected at the ATLAS detector between 2015 and 2018 (\sim 136 fb⁻¹).
- Aiming to measure more Signal and Control regions, phase spaces and kinematic distributions.

Phase-space definition

S	Signal and Control Regions						
	$\geq 1 \text{jet}$	VBF					
$p_{\mathrm{T}}^{\mathrm{miss}}$		> 200 GeV					
(additional) lepton veto	e, μ with $p_{\rm T} > 7$ GeV and						
Jet $ y $	< 4.4						
Jet $p_{\rm T}$	> 30 GeV						
$\Delta \phi_{\mathrm{jet}_{\mathrm{i}}, p_{\mathrm{T}}^{\mathrm{miss}}}$	> (0.4, for the four lead					
Leading jet $p_{\rm T}$	> 120 GeV	> 80 GeV					
Subleading jet $p_{\rm T}$	-	> 50 GeV					
Leading jet $ \eta $	< 2.4	-					
$m_{ m jj}$	-	> 200 GeV					
$\Delta y_{ m jj}$	-	> 1.0					
Jet-gap requirement	-	no additional jets					
2-lepton Control Region							
Lepton pair	Opposite sig	n, same-flavour pair					
Leading lepton $p_{\rm T}$		$> 80 { m GeV}$					
Subleading lepton $p_{\rm T}$		$> 7 { m GeV}$					
Lepton $ \eta $	< 2.5						
$ m_{ll} - m_Z $		$< 25 { m GeV}$					
1-lepton Control Region							
Lepton	sir	ngle lepton: e^+, e^-, μ^-					
Leading lepton $p_{\rm T}$	>	7 GeV for μ , 25 Ge					
Lepton $ \eta $	< 2.5						
Jets	b-veto						

V for e

Phase-space definition

S	Signal and Control Regions						
	$\geq 1 \text{jet}$	VBF					
$p_{\mathrm{T}}^{\mathrm{miss}}$		> 200 GeV					
(additional) lepton veto	e, μ with $p_{\rm T} > 7 {\rm ~GeV}$ and						
Jet $ y $	< 4.4						
Jet $p_{\rm T}$		$> 30 { m GeV}$					
$\Delta \phi_{ m jet_i, p_T^{miss}}$	>	0.4, for the four lead					
Leading jet $p_{\rm T}$	> 120 GeV	> 80 GeV					
Subleading jet $p_{\rm T}$	-	> 50 GeV					
Leading jet $ \eta $	< 2.4	-					
$m_{ m jj}$	-	> 200 GeV					
$\Delta y_{ m jj}$	-	> 1.0					
Jet-gap requirement	-	no additional jets					
2-lepton Control Region							
Lepton pair	Opposite sign, same-flavour pair						
Leading lepton $p_{\rm T}$	> 80 GeV						
Subleading lepton $p_{\rm T}$	$> 7 \ { m GeV}$						
Lepton $ \eta $	< 2.5						
$ m_{ll}-m_Z $	$< 25 { m GeV}$						
1-lepton Control Region							
Lepton	single lepton: e^+, e^-, μ^-						
Leading lepton $p_{\rm T}$	$> 7 \text{ GeV for } \mu$, 25 Ge						
Lepton $ \eta $	< 2.5						
Jets	b-veto						

eV for e

Reco object selection

Muons

- $p_T > 7 \text{ GeV and } |\eta| < 2.5$
- Working points:
 - Selection tool: Loose
 - Isolation tool: LooseTrackOnlyIso
 - Efficiency tool: Loose
- Include in OR (default)

- $p_T > 7 \text{ GeV and } |\eta| < 2.47$ (excluding crack)
- Working points:
 - Likelihood: LHMedium
 - Isolation tool: LooseTrackOnly
- Include in OR (default)

MET

• Using the default configuration of the METmaker tool

- DoRemoveMuonJet: true
- Using FJVT
- JetSelection: Tight

Electrons

Jets

- $p_T > 30 \text{ GeV}$, |y| < 4.4
- Using AntiKt4EMTopo jets
- Working points:
 - JVT efficiency tool: Medium
 - FJVT tool OP: Tight
 - Jet cleaning: LooseBad
- Include in OR (default)
- B-tagging:
 - TaggerName: MV2c10
 - Sel. Tool OP: HybBEff_77
 - Eff. Tool OP: FixedCutBEff_77
 - Reduction point: Tight
 - $p_T > 20 \text{ GeV}$, $|\eta| < 2.5$

Final-state particle regions using the 2016 dataset

0-lepton SR

- Exactly 0 leptons required, veto events with additional leptons.
- Multijet background not included.

- additional leptons.
- Veto events with b-jets to suppress top contributions.

1-muon SR

2-muon SR

• Exactly one muon, veto events with

miss observable includes muon pT (treated as invisible) \rightarrow acts as a proxy for the W boson pT.

- Exactly one opposite-charge muon pair, veto events with additional leptons.
- $66 \text{ GeV} < m_{11} < 116 \text{ GeV}$
- p_{T}^{miss} observable includes muon p_{T} (treated as invisible) \rightarrow acts as a proxy for the Z boson p_T.

Systematic Uncertainties

Systematic Uncertainties: O-lepton Signal Region

Systematic Uncertainties: 2-muon Control Region

Systematic Uncertainties: 1-muon Control Region

Bayesian unfolding

- Fill a response matrix with events which pass **both** the reco and particle-level event selection.
- The response matrix represents the probability of a measured • spectrum given an underlying true distribution (particle-level MC)
- Correct for detector-level events which did not fall in the • particle-level fiducial region definition (Fakes).
- Correct for efficiency and acceptance losses when going from particle-level to detector-level (Miss).
- Use Bayes' theorem to find the probability of an underlying true spectrum given the measured spectrum.

MET in monojet-like PS

nfold

2-muon CR

Ratios: 0-lepton / 2-muon: met in monojet-like PS

21

-Unfold -

Ratios: 0-lepton / 1-muon: met in monojet-like PS

Unfold -

Response matrices

- Showing bin migrations when unfolding from reco to particle level
- Using Bayesian unfolding

	I	I	Ι					∑€			Γ		I	Ι	I	Ι				
			-0.1 ± 0.3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	11.2 7 ± 3.3	87.3 ± 9.3		ğ		2-	muc	on CI	R					1.4 ± 1.2	1.9 ± 1.4	10. ± 3
								liss												
.0	0.1	0.1	0.4	0.2 1.1 17.9	71.6	8.6		D D	 '						0.2	0.4	0.8	2.7	26.1	62
J.Z 1	± 0.3	± 0.2	± 0.7	$\pm 0.5 \pm 1.0 \pm 4.2$ 1.3 20.7 67.6	2 ± 0.5	± 2.9)e			0.1	0.1	0.1		± 0.4	± 0.6	± 0.9	± 1.0	± 5.1	± 7 9.8
).3)	± 0.3 0.3	± 0.4 0.4	± 0.5 1.1	± 1.1 ± 4.5 ± 8.2 20.9 68.5 8.7	2 ± 3.1 0.0	± 0.2		<u>e</u>	10 ³		± 0.4 -0.0	± 0.3	± 0.4 0.1	0.2	± 0.8 0.9	± 0.8 2.5	± 1.5 21.7	± 4.4 66.5	± 8.2 8.1	± 3
0.2 2	± 0.5	± 0.6	± 1.1	$\pm 4.6 \pm 8.3 \pm 3.0$	0 ± 0.1		_	<u>e</u>	10	1	± 0.2	0.0	± 0.2	± 0.5	± 0.9	± 1.6	± 4.7	± 8.2	± 2.9	± C
	± 0.6	± 0.7	± 4.6	$\pm 8.3 \pm 2.8 \pm 0.2$	2		_	rtio		± 0.3	± 0.2	± 0.1	± 0.5	± 0.5	± 1.2	± 4.6	± 8.3	± 2.8	± 0.1	
3 D.6	0.8 ± 0.9	20.1 ± 4.5	71.4 ± 8.4	7.2 0.0 ± 2.7 ± 0.2			_	Ра		_	-0.1 ± 0.3	0.2 ± 0.4	0.4 ± 0.7	1.6 ± 1.2	22.5 ± 4.7	69.1 ± 8.3	6.3 ± 2.5		0.0 ± 0.1	
6 0.7	21.3 ± 4.6	69.5 ± 8.3	8.3 ± 2.9	0.0 ± 0.1			_			0.0 ± 0.0	0.2 ± 0.4	0.6 ± 0.8	1.5 ± 1.2	23.3 ± 4.8	66.9 ± 8.2	7.4 ± 2.7	0.0 ± 0.1			
.5 4.5	72.1 ± 8.5	6.6 ± 2.6	0.0 ± 0.1	-0.0 0.0 ± 0.0 ± 0.0)		_			0.1 ± 0.3	0.3 ± 0.5	1.6 ± 1.3	23.0 ± 4.8	68.9 ± 8.3	6.1 ± 2.5	0.0 ± 0.1	0.0 ± 0.0			
.4 8.4	7.0 ± 2.6	0.0 ± 0.1	0.0 ± 0.0	0.0 ± 0.0						0.2 ± 0.5	1.1 ± 1.0	22.8 ± 4.8	69.6 ± 8.3	6.3 ± 2.5	0.0 ± 0.1	0.0 ± 0.0				
-											_									
9 2.6	0.0 ± 0.1	0.0 ± 0.0	0.0 ± 0.0							1.4 ± 1.2	23.5 ± 4.8	68.6 ± 8.3	6.6 ± 2.6	0.0 ± 0.1	0.0 ± 0.0					
า	0.0	0.0					-			- 23.6	66.7	0.7	0.0	0.0						
).2	± 0.0	± 0.0								± 4.9	± 8.2	± 3.1	± 0.2	± 0.0						
)).0	0.0 ± 0.0	0.0 ± 0.0	-0.0 ± 0.0							79.8 ± 8.9	20.0 ± 4.5	0.2 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	I	I		I		
	•		·	10 ³										•				10	3	
			De	tector-lev	el p ^{mise}	[°] [Ge	V1									De	tect	or-l	eve	ЭÌ
			-		' T	L	-									-	-	_	-	

MET in VBF

Ratios: 0-lepton / 2-muon: met vbf

Ratios: 0-lepton / 1-muon: met vbf

Kesponse matrices

• Showing bin migrations when unfolding from reco to particle level

m_{jj} in VBF

2-muon CR

Ratios: 0-lepton / 2-muon: mjj vbf

-Unfold

Ratios: 0-lepton / 1-muon: mjj vbf

Kesponse matrices

31

• Showing bin migrations when unfolding from reco to particle level

dPhi in VBF

Ratios: 0-lepton / 2-muon: dPhi vbf

Ratios: 0-lepton / 1-muon: dPhi vbf

Kesponse matrices

0-lepton SR

[rad]

Φ

article-lev

• Showing bin migrations when unfolding from reco to particle level

Data/MC comparisons : 0-lepton top enhanced control region

• Main top contribution comes from ttbar.

\geq 1 b-jets

\geq 2 b-jets

0-lepton SR : DR vs DS single-top

2) 2) Py8) 1 2)	
1	, =
·····	
{	Ξ
·····	
	Ξ
<u> </u>	. =
800	200
p _T ^{miss} [O	ieV]

Data/MC comparisons : 1-muon top enhanced control region

- Larger Wt contributions ➡ worse Data/MC agreement.
- Options for 1-lepton CR:
 - Include b-veto
 additional b-tagging systematics but smaller top modelling uncertainties.
- Need to study different Wt modelling methods: diagram subtraction VS diagram removal.

• Remove b-veto = larger top modelling uncertainties but no b-tagging systematics (cleaner cancelation of uncertainties in the ratio).

1-muon CR (b-jet inclusive): DR vs DS single-top

1 1	'.	
)		=
y8)	-	
		Ξ
	-	
,	-	
)		
	-	
	-	
	-	
		Ξ
	-	
		=
	-	
		_
	-	
		Ξ
		<u>.</u>
	•	· —
{ 		—
)		
	.	
	· · · · -	
	•	
	· · · · -	
		=
		=
	• • • • •	
<u> </u>	•	
· ·	•	
		Ξ
		Ξ
		·-==
	_	=]
		H
800		
UUU mia		2000
p _T	° [G	eV]

1-muon CR (b-veto): DR vs DS single-top

	T	
)		
) v8)		
y0)		
		_
		=
		=
		_
)	-	_
<u>۱</u>		
•		
)		
	-	
	•	
	• • • •	
		=
	• • • •	=
		=
	•	•
		·
		=
	• • • •	··
		E
	• • • •	··
	• • • •	··
		=
800		2000
miee		
р'''' ³⁵ Т	ιG	iev]

Particle level ratios

truth stack SR

truth stack K F 0 5 -m

p_T^{miss} [GeV]

Non-fiducial

Particle level ratios

truth stack SR

truth stack CR 2 0 5 -m

Non-fiducial

