Search for $H \rightarrow Za^0 \rightarrow \ell \ell j$ with ATLAS

IoP, APP and HEPP Meeting, 2019 Elliot Reynolds

Aims and Motivation

Aims

- Use full ATLAS Run II dataset (140 fb⁻¹) to perform first search for $H \rightarrow Z(\ell \ell) X$ (had), where $\ell = e \text{ or } \mu$
- Interpret X as J/ψ , η_c , or a^0 (BSM) with $m_{a^0} < 4 \text{ GeV}$

$H - - \bigcirc I = I$ $Z \leftarrow \ell^+$

Motivation - Charmonium

- Higgs boson decay to Z + light resonances unconstrained
- Provides low Q^2 probe of $H \rightarrow ZZ^*$
- Potential limits on charm Yukawa coupling

Motivation - BSM

 Many BSM models[†] predict Higgs boson decays into a Z boson and a light psuedoscalar (a⁰) with a large BR to hadrons

[†]Eur. Phys. J. C (2016) 76: 501

$2HDM+s a^0$ Branching Ratios

- 2HDM+s is required to provide the masses in NMSSM
- Figures[†] show dominant hadronic BR until $\sim 2m_c$
- BR(had) \gtrsim 99% for tan $eta=rac{1}{2}$ in Type II, III, & tan eta= 5 in Type IV †

[†]Phys. Rev. D 90, 075004

Elliot Reynolds

²/₁₃

Physics Processes

- Focus on low mass (< 4 GeV) signals, as higher BR and unique a⁰ decay kinematics lead to higher sensitivity
- Search for signals from inclusive Higgs boson production
- The dominant background is Z + jets, with < 1% contributions from $t\bar{t}$ and diboson

Simulation

- Signals modelled using POWHEG, PYTHIA8 and EVTGEN
- Z + jets modelled using SHERPA 2.2.1
- Full GEANT4 simulation of the ATLAS detector

Event-Level Kinematics and Selection

Selection	Details
Triggers	Single lepton triggers $p_{T, \text{ lead lepton}} > 27 \text{ GeV}$
Leptons	$N_\ell \ge 2$ with $p_{ m T} > 18$ GeV
Z boson	2 SF OS leptons, with $ m_{II} - m_Z < 10$ GeV
Jet (<i>a</i> ⁰)	Anti- $k_T R = 0.4$ jet with $p_{T,i} > 20$ GeV
Pre-Higgs	$m_{\ell\ell m j} < 250~{ m GeV}$
9	Select highest p_{T} jet as a^{0} -candidate
\geq 2 tracks	\geq 2 tracks ghost associated to the calorimeter jet
Higgs SR	120 GeV $< m_{\ell\ell m j} <$ 135 GeV

4

13

Track Selection

- Tracks Ghost-Associated[†] to the calorimeter jet used to form input variables for classification MVA
- Loose track quality requirements applied
- $|d_0| < 2 \& |\Delta z_0 \sin \theta| < 3$ required
- Signal efficiencies of 94 96%, for a pileup rejection of ~ 60%
- Jets are required to have ≥ 2 tracks surviving these requirements

[†]Phys. Lett. B 659:119-126, 2008

Elliot Reynolds

 $H \rightarrow Z(\ell \ell) a^0$ (had) Search

Input variables:

- 1 $\Delta R_{\text{lead track}}$
- 2 $p_{T, lead track}/p_{T, all tracks}$
- 3 τ₂
- 4 $U1(0.7)^{\dagger}$
- 5 M2(0.3)[†]
- 6 angularity(2)
- All dimensionless to minimise correlation between MVA output and m_{llj}

[†]J. High Energ. Phys. (2016) 2016: 153

Hadronic Resonance Tagger (1/2) - Regression

- A Multi-Layer-Perceptron (MLP) is used to classify signal resonances against background jets
- Not a standard classification problem, due to the spectrum of signals
- This is solved by training a regression MLP to predict m_{a⁰}
- The mass hypothesis is input to the classifier, informing it which part of the phase space to consider
- This results in \sim **13%** improvement in the expected S/\sqrt{B}

13

- Cut chosen to optimise the expected S/\sqrt{B} , assuming all values of a^0 mass equally likely: 0.052
- MLP background efficiency = 1.0%

a ⁰ mass / GeV	0.5	0.75	1	1.5	2	2.5	3	3.5	4
MLP Eff (%)	31	28	26	21	17	11	5.6	4.3	1.7
MLP S/\sqrt{B} Gain	3.1	2.7	2.6	2.1	1.7	1.1	0.56	0.43	0.17

8

2-bin cut-and-count analysis strategy adopted

- Signal region (SR): 120 GeV $< m_{\ell\ell j} < 135$ GeV
- Control region (CR): 100 GeV $< m_{\ell\ell j} <$ 110 GeV or 155 GeV $< m_{\ell\ell j} <$ 175 GeV
- Background estimated using MC-based transfer factor: $T = B_{SR}^{MC}/B_{CR}^{MC}$
- Expected 0.5 GeV a⁰ yield for BR=1: 24k
- Expected background yield: 84k

Alternative Background Model	Closure
Direct MC estimate	2.2%
MC extrapolation from MLP CR	0.68%
MC corrected ABCD estimate	3.4%

- Likelihood fits to Asimov datasets are used to extract expected results in the absence of systematics
- Uncertainties and 95% CL limits estimated for $\mu_{\text{Sig}} = \frac{\sigma(H) \text{BR}(H \rightarrow Za^0)}{\sigma_{\text{SM}}(H)} / \sigma_{\text{SM}}(H)$

Expected Stat-Only Results

a ⁰ mass / GeV	0.5	0.75	1	1.5	2	2.5	3	3.5	4
$\Delta \mu_{\text{Sig}}$ (%)	1.7	1.9	1.9	2.1	2.7	4.0	7.5	10	37
95% CL Limit (%)	3.2	3.8	3.7	4.2	5.2	7.9	15	20	72

Systematic Uncertainty	95% CL Limit (%) for 0.5 GeV a ⁰
All Systematics	30
Background Modelling	19
Background MC Statistics	17
Pileup	15
Leptons	8.1
Trigger	3.4
Higgs Cross Section	3.3
Signal MC Statistics	3.2
Luminosity (2% assumed)	3.2
Stat-Only Fit	3.2

- Background modelling uncertainty on $T = B_{SR}/B_{CR}$ evaluated by comparison with MADGRAPH
- Jet, tracking and signal modelling uncertainties yet to be added

Post-Fit Value

- ώ ν <u>τ</u> ο <u>τ</u> ν ω 0.0228 + 0.5989 o ALTO BROD SPH 0.0018 ± 1.0000 -0.0023 ± 1.0000 -0.0006 ± 1.0000 +0.0007 + 1.0000 H - 0.0228 anno (M INCOME NUMBER OF 0.0005 + 1.0000 -0.0038 ± 1.0000 -0.0008 = 1.0000 +1.0000 ± 0.0035 handan barbar hantan ATLAS work-in-progress
- Full analysis strategy validated in MLP-sideband validation region (VR): 0.034 < MLP < 0.052
- 89.8k background events expected in VR
- **89919** events observed in VR
- All systematics included in fit
- $\mu = 0.02 \pm 0.60$

Expected 95% CL limit set on ^{σ(H)BR(H→Za⁰)}/_{σSM(H)}, in the absence of systematics, at:

1 3.2 - 72% for the a^0 signal samples (0.5 < m_{a^0} < 4 GeV) 2 19% for the η_c signal sample 3 18% for the J/ψ signal sample

- Expected 95% CL limit with (most) systematics set for 0.5 GeV a⁰ signal sample at: 30%
- Analysis validated in MLP-based VR

Expected 95% CL limit set on ^{σ(H)BR(H→Za⁰)}/_{σSM(H)}, in the absence of systematics, at:

1 3.2 - 72% for the a^0 signal samples (0.5 < m_{a^0} < 4 GeV) 2 19% for the η_c signal sample 3 18% for the J/ψ signal sample

- Expected 95% CL limit with (most) systematics set for 0.5 GeV a⁰ signal sample at: 30%
- Analysis validated in MLP-based VR

Thank you for listening!

Backup Slides

- Likelihood
- MC generators
- a⁰ Branching Ratios
- Other MLP input variables
- Alternative background estimates
- Pileup tracks
- Correlation and pull plots

Likelihood (stat-only): $\mathcal{L} = \text{Pois}(N_{\text{SR}}^{\text{D}}; \mu S_{\text{SR}}^{\text{MC}} + T \times \mu_{B} \times N_{\text{CR}}^{\text{D}})) \times \text{Pois}(N_{\text{CR}}^{\text{D}}; \mu_{B} \times N_{\text{CR}}^{\text{D}})),$ where $S_{CR}^{\text{MC}} \approx 0$

Table below shows MC generators used to model various backgrounds

Process	MC Generator				
$(ggF) H ightarrow Za^0$	Powheg+Pythia8+EvtGen				
$(ggF) H \rightarrow Z\eta_c$	POWHEG+PYTHIA8+EVTGEN				
(ggF) $H \rightarrow ZJ/\psi$	Powheg+Pythia8+EvtGen				
Z+jets	Sherpa 2.2.1				
ZZ	Sherpa 2.2.1				
ZW	Sherpa 2.2.1				
tī	Powheg+Pythia8+EvtGen				

Table below shows mains decay modes (BR > 1%) for various a^0 mass points, assuming $\Gamma = m/1000$

Mass Point / GeV	Main Decay Modes
0.5	gg (92%), $\mu^+\mu^-$ (8%)
1	gg (88%), $\mu^+\mu^-$ (12%)
1.5	gg (76%), s $ar{s}$ (16%), $\mu^+\mu^-$ (8%)
2	gg (82%), s $ar{s}$ (13%), $\mu^+\mu^-$ (5%)
2.5	gg (88%), s $ar{s}$ (8%), $\mu^+\mu^-$ (4%)
3	gg (86%), s $ar{s}$ (9%), $\mu^+\mu^-$ (4%)
3.5	cī (88%), gg (10%), sī (1%)
4	$car{c}$ (57%), $ au^+ au^-$ (37%), gg (5%)
4.5	$car{c}$ (52%), $ au^+ au^-$ (43%), gg (4%)
5	$car{c}$ (50%), $ au^+ au^-$ (45%), gg (4%)
8	$ au^+ au^-$ (45%), c $ar{c}$ (40%), gg (14%)
12	$bar{b}$ (81%), $ au^+ au^-$ (10%), $car{c}$ (7%), gg (2%)

Number of expected background events in various regions

Background Estimation Method	SR	Gap	VR	VR Gap
Direct MC estimate	82400	142000	93800	142000
MC extrapolation from $m_{\ell\ell j}$ CR	84300	145000	89800	136000
MC extrapolation from MLP CR	83700	146000	95400	146000
ABCD estimate	81400	142000	86700	133000

(Gap: the disconnected region between the SR and CR, 110 GeV $< m_{\ell\ell j} < 120$ GeV and 135 GeV $< m_{\ell\ell j} < 155$ GeV)

(VR: MLP-based validation region, defined to be as close as possible to SR in MLP, and contain the same amount of background, 0.034 < MLP < 0.052)

Truth Matching

- Need algorithm to reject pileup
- **\blacksquare** To access such an algorithm, must know which tracks are from a^0
- Links to truth particles responsible for tracks stored in AOD
- Follow family tree up and record if a⁰ is present

Tracks from a⁰

Tracks not from a⁰

 $H \rightarrow Z(\ell \ell) a^0$ (had) Search

19

- Two pileup rejection working points considered
- Both include Loose track quality WP (included in efficiencies)
- Loose TTVA benefits from being the standard for R21, so will use that

Signal Sample	Loose TTVA (d_0 ·	< 2, $\Delta z_0 \sin \theta < 3$)	$d_0 < 2, \ \Delta z_0 \sin heta < 1, \ p_{T} > 1 \ GeV$		
	Signal Efficiency	Pileup Efficiency	Signal Efficiency	Pileup Efficiency	
a ⁰ _{0.5 GeV}	$96\pm7\%$	$41\pm3\%$	$94\pm7\%$	$26\pm2\%$	
a ⁰ _{2.5 GeV}	$95\pm6\%$	$38\pm2\%$	$90\pm5\%$	$24\pm2\%$	
a ⁰ _{8 GeV}	$94\pm6\%$	$47\pm3\%$	$83\pm5\%$	$32\pm2\%$	
η_c	$95\pm4\%$	$37\pm2\%$	$88\pm4\%$	$23\pm2\%$	

Removing the pileup tracks greatly improved the track-assisted mass • This could form the basis for the reconstruction of the a^0 mass

After

 $H \rightarrow Z(\ell \ell) a^0$ (had) Search

Systematic Uncertainty Correlations and Pulls

ATLAS work-in-progress

22

13

Elliot Reynolds

$H \rightarrow Z(\ell \ell) a^0$ (had) Search

IoP 2019

Validation Region Correlations and Pulls

ATLAS work-in-progress

Elliot Reynolds

$H \rightarrow Z(\ell \ell) a^0$ (had) Search

IoP 2019

23 13

ω