Measuring the mass of the Higgs Boson at the ATLAS detector in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel using an analytic signal model

Tom Powell

University of Sheffield

April 2019

Introduction

Why measure the mass of the Higgs Boson?

- The Standard Model does not predict the Higgs Boson mass, but the Higgs branching ratio depends on mass
- Measurement of both of these properties serves as a test of the Standard Model.

Why use the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel?

- Electrons and muons are very well reconstructed by ATLAS
- The channel has a smooth background with a sharp peak
- Large signal/background ratio

Plot from JHEP 03 (2018) 095

Currently, ATLAS uses two methods to perform this measurement

- Per lepton response
 - Build a model of the $m_{4\ell}$ distribution using individual energy response distributions
 - Each lepton in each event requires 3 Gaussians, which are convoluted in each event to give a total of 81 Gaussians per event. These are then reduced down to 4 using Gaussian mixture reduction
 - See arXiv:1806.00242 for more details
- 2 Template model
 - Smooth Monte Carlo $H \rightarrow ZZ^* \rightarrow 4\ell$ distributions at various m_H values
 - Interpolate these to give a continuous model

An analytic model has advantages over the current methods

- Simplicity
 - In the per-event method, there is no average m_H model, so there is no asimov dataset.
- Flexibility
 - In the template method, each addition of a parameter of interest (e.g. natural width) requires another dimension of interpolation
 - These can be added much more easily with an analytic model

This method has been used before

- CMS uses an analytic model to measure m_H in $H o ZZ^* o 4\ell$
- ATLAS uses an analytic model to measure m_H in $H \rightarrow \gamma \gamma$

Two models were considered

- Sum of a Gaussian and Crystal Ball function
 - A Crystal ball function is a function with a Gaussian core and a power law tail
- A double-sided Crystal Ball function
 - A double-sided Crystal Ball function is the same but with different power laws for the two tails

The tail shapes are determined by two parameters:

- α controls where the tail begins
- *n* is the exponent of the tail

- For now, only using *ggF* Monte Carlo, other production modes will be included in the future
- Considering only the case where final state is two pairs of same-flavour opposite sign electrons or muons.
- Classify events in four channels by final state: 4μ, 4e, 2e2μ and 2μ2e.

First, decide which model to use

Fit per-channel to $m_H = 125 \text{ GeV}$ mass point and use $\chi^2/n_{d.o.f.}$ to asses the goodness of fit

Double sided CB provides a better fit than CB + Gaussian

Check the DCB works using a simple model

- Split the MC set for $m_H = 125 \text{ GeV}$ in half
- Fit the model, per channel, to the first half and reserve the second half for validation

Fits to each channel are good, now perform validation

- Parameterise the mean of each channel, *i*, as $\mu^i = m_H c^i$ where c^i are offsets
- Fit the value of *m_H* to the other half of the MC, simultaneously across all four channels.
- All parameters other than *m_H* are fixed for the validation fit

Validation on simple model

- Result m_H = 125.00 ± 0.01 GeV
 - Note, this uncertainty is due to simulation statistics and is not normalised to the expectation
- Parameterisation shows closure, the simple model works!
- Now build a more complicated model

The model

Why build a more complicated model?

- m_H is not exactly 125 GeV so parameterising m_H as μ + offset is not exact
- Slope of μ vs $m_H < 1$
- A linear parameterisation is needed
- Can do a fit (as in figure opposite) or better still, simultaneously fit to each mass point

First, build the parameterisation

- Simultaneously fit, per channel, across several MC datasets of varying m_H
 - Mass points used are $m_H = 124, 124.5, 125.5, 126 \text{ GeV}$
 - The mass point $m_H = 125~{
 m GeV}$ is omitted from this fit and reserved for validation later
- Parameters of the fit are parameterised vs m_H
 - As mentioned previously, parameterise μ to be linear vs m_H
 - For now, all others are kept constant vs m_H to aid convergence of fit

Results of simultaneous fit

Fits to $2e2\mu$ channel for 124.5 and 125.5 GeV mass points

Procedure for validation

- Using the parameterisations for each channel, fit m_H simultaneously to the $m_H = 125 \text{ GeV MC}$ set.
- All parameters fitted in previous step have uncertainties, so apply Gaussian constraints to these

Validation & future work

Model does not yet work perfectly, currently working to improve this with two approaches:

- Parameterise variables differently.
 E.g. σ is better parameterised linearly
- Currently, validation fit assumes parameters are uncorrelated, which is not the case. Correlation matrices from the fits need to be analysed to work out the best way to parameterise variables

- An analytical model for $H \rightarrow ZZ^* \rightarrow 4\ell$ is currently under development
- Currently working to improve model by accounting for correlations between parameters and parameterising variables differently.
- Also planned to be added in the future
 - Other production modes (e.g. VBF, $t\bar{t}H$ etc)
 - Per event errors

Validation plots

