

# Search for CP violation in $\Lambda_b \rightarrow p \pi^- \pi^+ \pi^-$ decays

Gediminas Sarpis

University of Manchester, United Kingdom On behalf of the LHCb collaboration

IOP HEP 2019, Imperial College London

#### April 10, 2019

Gediminas Sarpis

Search for CP violation in  $\Lambda_b \rightarrow p \pi^- \pi^+ \pi$ 

April 10, 2019 1 / 18

# Outline

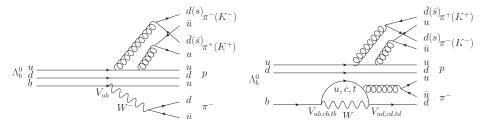
#### Motivation

2 Novel Approach: Energy Test

#### 3 Selection

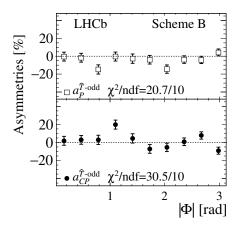
#### ④ Simulation

5 Sensitivity studies: Energy Test method


#### 6 Cross-checks

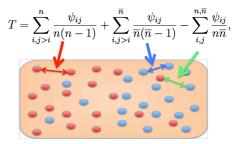
#### Conclusions

三日 のへの


### Theoretical Motivation

- Transitions governed by  $b \rightarrow ud\bar{u}$  tree and  $b \rightarrow du\bar{u}$  penguin amplitudes of similar magnitude. Large relative weak phase in SM from the CKM elements,  $\alpha = arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$
- CPV is well established in B-meson decays



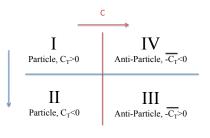

# Motivation: First Evidence of CPV in Baryons

- CPV has never been observed in baryons.
- First evidence of CPV in baryons has been found in this channel with significance of 3.3σ using Run 1 data
- Probing matter-antimatter asymmetries in beauty baryon decays (Nature Physics 13, 391-396 (2017))



# Novel Approach: Energy Test

- $\bullet \ \, \mathsf{System} \to \mathsf{Phase} \ \, \mathsf{Space}$
- Λ<sub>b</sub> / Λ<sub>b</sub> → opposite flavour decays
- $\psi(d_{ij}) = e^{-d_{ij}^2/2\delta^2}$  : Weighting function
- $n, \bar{n}$ : number of  $\Lambda_b, \bar{\Lambda}_b$ candidates
- *d<sub>ij</sub>*: distance in phase space
- $\delta$ : distance parameter to be optimized

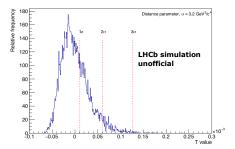



Observing CP violation in many-body decays (Phys. Rev. D 84, 054015)

김 글 제 김 제 글 제 글 날

# Novel Approach: Energy Test

- Model independent
- Going from sample (I to III) or (II to IV) constitutes a CP transformation
- Can look for CPV in two combinations: P-even (I + II) vs (III + IV) and P-odd (I + IV) vs (II + III) CPV
- Not sensitive to global production and detection asymmetries



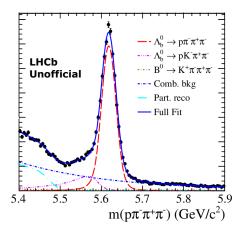

Triple Product:  $C_{\hat{T}} \equiv \vec{p}_p \cdot (\vec{p}_{h^-} \times \vec{p}_{h^+})$ 

D

# Novel Approach: Energy Test

- Randomly assign a flavour to get a sample consistent with no CPV
- T-value is compared against permutations
- T consistent with 0 means CP conservation
- T significantly greater than 0 implies differences between samples
- Plot shows T-value distribution from permutations and discovery limits
- Fraction of permuted samples with  $T > T_{data}$  sets the p-value of the test
- P-even and P-odd versions of Energy Test will be run




### Previous applications of the Energy Test

- Search for CP violation in  $D^0 \rightarrow \pi^- \pi^+ \pi^0$  decays with the energy test (https://arxiv.org/abs/1410.4170)
- Search for CP violation in the phase space of D<sup>0</sup> → π<sup>+</sup>π<sup>-</sup>π<sup>+</sup>π<sup>-</sup> decays (https://arxiv.org/abs/1612.03207)
- On model-independent searches for direct CP violation in multi-body decays (https://arxiv.org/abs/1612.04705)
- Calculating p-values and their significances with the Energy Test for large datasets (https://arxiv.org/abs/1801.05222)
- Biased bootstrap sampling for efficient two-sample testing (https://arxiv.org/abs/1810.00335)

▲□ ▲ □ ▲ □ ▲ □ ▲ □ ■ □

# Selection: Signal channel fit results

- Previous analysis signal yield: 6636
- Run 2 yield approx. 6 times bigger
- Integrated Luminosity (2011,2012,2015,2016,2017): 7fb<sup>-1</sup>



## Selection: Pion ordering

$$\Lambda_b \rightarrow p \pi^- \pi^+ \pi^-$$

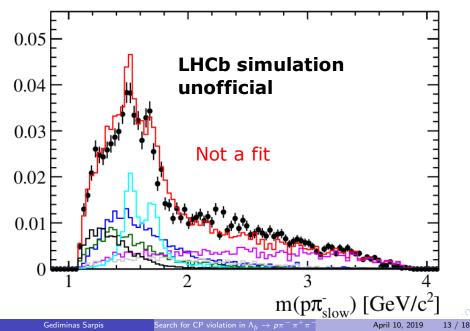
- For unique definition, pions must be ordered
- Without same charge pion ordering CPV asymmetries vanish
- Different ordering schemes investigated
- Decision to use previous pion ordering made
- Order negative pions by the magnitude of their momenta in  $\Lambda_b$  rest frame

$$\Lambda_b o p \pi_{fast}^- \pi^+ \pi_{slow}^-$$

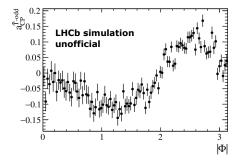
### Simulation

- This decay has a rich resonance sub-structure
- There is no amplitude model for this channel
- The default MC cocktail is not optimized for the resonances we explore
- Custom MC cocktail was created using mass distributions as reference for resonance contributions
- TensorFlow package was used for creating MC
- Example of amplitude model for specific decay topology provided by theorist (*G. Durieux (arXiv:1608.03288)*)

### Simulation: attempts for a full model


• 
$$\Lambda_b \to (N^{+*} \to (\Delta^{++} \to p\pi^+)\pi^-)\pi^-$$
  
 $N^{+*}(1520), N^{+*}(1535), N^{+*}(1650), N^{+*}(1675), N^{+*}(1680)$   
 $N^{+*}(1700), N^{+*}(1710), N^{+*}(1720), N^{+*}(1875), N^{+*}(1900), N^{+*}(2190)$   
•  $\Lambda_b \to (N^{+*} \to p(\rho \to \pi^+\pi^-))\pi^-$   
 $N^{+*}(1720), N^{+*}(1875), N^{+*}(1900)$   
•  $\Lambda_b \to (N^{+*} \to p(\sigma \to \pi^+\pi^-))\pi^-$   
 $N^{+*}(1535), N^{+*}(1650), N^{+*}(1675), N^{+*}(1680), N^{+*}(1700), N^{+*}(1875)$   
 $N^{+*}(1900)$ 

• 
$$\Lambda_b 
ightarrow (a_1^- 
ightarrow (
ho 
ightarrow \pi^- \pi^+) \pi^-) p$$


• Non resonant 
$$\Lambda_b o p \pi^- \pi^+ \pi^-$$

ELE NOR

Simulation: mass distributions of MC model vs Data

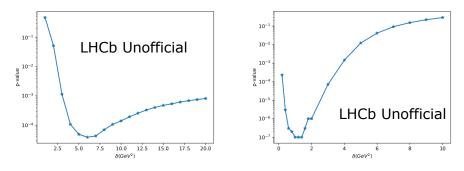


### Simulation: P-odd CPV introduces to relevant variables



- $\Phi$  is the angle between the decay planes used in previous analysis
- This is new compared to previous analysis and allows to perform sensitivity studies
- This model includes interference between resonances and was implemented in the helicity formalism

April 10, 2019 14 / 18


Sensitivity studies: Energy Test method

- Choice of ET distance variables:  $m^2(p\pi^+), m^2(\pi^+\pi_s^-), m^2(p\pi_s^-), m^2(p\pi^+\pi_s^-), m^2(\pi^+\pi_s^-\pi_f^-)$
- Other variables (e.g. helicity angles) investigated, sensitivity to CPV was not majorly affected
- $\bullet\,$  Existing pion ordering and mass variable choice enhances  $\Delta^+\,$  contribution

$$\psi(\mathbf{d}_{ij}) = \mathbf{e}^{-\mathbf{d}_{ij}^2/2\delta^2}$$
$$T = \sum_{i,j>i}^n \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\overline{n}} \frac{\psi_{ij}}{\overline{n}(\overline{n}-1)} - \sum_{i,j}^{n,\overline{n}} \frac{\psi_{ij}}{n\overline{n}},$$

# Sensitivity studies: Energy Test method choice of $\boldsymbol{\delta}$

- $\bullet\,$  The choice of optimal  $\delta$  is different depending on how CPV is introduced
- It can depend on overall size of phase space, width of contributing resonances, yield and other factors
- Toy studies show the dependence of sensitivity on the choice of  $\delta$



P-even CPV scenario with 11% asymmetry in the  $a_1$ 

P-odd CPV included in  $\sin(\phi)$  amplitude of the  $\Delta^+$  cascade topology

Gediminas Sarpis

Search for CP violation in  $\Lambda_b \to p \pi^- \pi^+$ 

April 10, 2019 16 / 18

## Energy Test: Cross-checks

- Energy Test is largely insensitive to global detection/production asymmetries by construction
- Cross-checks on control and high mass side band samples have been performed (sample sizes set to yields expected in data)
- Energy Test was applied on  $\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \pi^-$  control sample with no expected CPV.
- Energy Test was applied on unblinded high mass side band  $\Lambda_b$  signal sample with  $m(\Lambda_b) = [5.75 6.1 GeV/c^2]$
- Additionally Energy Test was applied to  $\Lambda_b^0 \to p K^- \pi^+ \pi^-$  peaking background with no CPV observed
- $\bullet\,$  Effect due to  $\sim 3\%$  proton detection asymmetry was investigated

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

### Conclusions

- Search for CPV in  $\Lambda_b \to p \pi^- \pi^+ \pi^-$  decays analysis has been presented
- All major cross-checks have been completed
- Analysis is mature and will be unblinded soon
- Potentially, this analysis could lead to the first observation of CPV in baryons

BACKUP

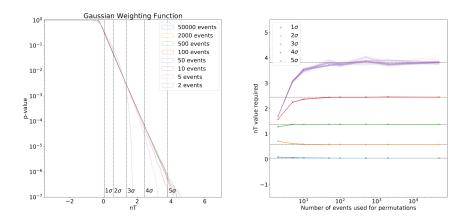
< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < < 回 > < < つ < ○</li>

# Backup: Note on systematic effect of Energy Test

- Different control samples used to check for systematic effects
- If such test are passed, no additional systematic uncertainties are assigned
- The p-value calculated relates to statistical effects alone
- This was done in previous LHCb applications of the Energy Test and other two-sample test analyses from LHCb and BaBar.
- https://arxiv.org/pdf/0802.4035.pdf
- https://arxiv.org/pdf/1212.1856.pdf
- https://arxiv.org/abs/1308.3189
- https://arxiv.org/pdf/1110.3970.pdf
- https://arxiv.org/abs/1310.7953

Backup:  $\Lambda_b \rightarrow (\Delta^+ \rightarrow (\Delta^{++} \rightarrow p\pi^+)\pi^-)\pi^-$  Cascade topology amplitudes by Durieux

| $\sqrt{2}$     | $Re((A_{+}^{*}B_{+} + A_{-}^{*}B_{-})(b_{1+}^{*}b_{3+} + b_{1-}^{*}b_{3-}^{*}))$ | $(1+3\cos^2\theta_p)$ | $\cos \theta_{\Delta^{++}}$                               |                |
|----------------|----------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------|----------------|
| 1/2            | $( B_{+} ^{2} +  B_{-} ^{2})( b_{3+} ^{2} +  b_{3-} ^{2})$                       | $(1+3\cos^2\theta_p)$ |                                                           |                |
| 9/4            | $( A_+ ^2 +  A ^2)( b_{2+} ^2 +  b_{2-} ^2)$                                     | $\sin^2 \theta_p$     | $\sin^2 	heta_{\Delta^{++}}$                              |                |
| 1/4            | $( A_+ ^2 +  A ^2)( b_{1+} ^2 +  b_{1-} ^2)$                                     | $(1+3\cos^2\theta_p)$ | $(1+3\cos^2\theta_{\Delta^{++}})$                         |                |
| $-3\sqrt{2}/2$ | $Re((A_{+}^{*}B_{+} + A_{-}^{*}B_{-})(b_{2+}^{*}b_{3+} + b_{2-}^{*}b_{3-}))$     | $\sin 2\theta_p$      | $\sin \theta_{\Delta^{++}}$                               | $\cos \phi_p$  |
| -3/2           | $( A_{+} ^{2} +  A_{-} ^{2})Re(b_{1+}^{*}b_{2+} + b_{1-}^{*}b_{2-})$             | $\sin 2\theta_p$      | $\sin 2\theta_{\Delta^{++}}$                              | $\cos \phi_p$  |
| 3/2            | $( A_+ ^2 +  A ^2)Re(b_{1+}^*b_{2-} + b_{1-}^*b_{2+})$                           | $\sin^2 \theta_p$     | $\sin^2	heta_{\Delta^{++}}$                               | $\cos 2\phi_p$ |
| $-3\sqrt{2}/4$ | $Im((A_{+}^{*}B_{+} - A_{-}^{*}B_{-})(b_{2+}^{*}b_{3+} + b_{2-}^{*}b_{3-}))$     | $\sin 2\theta_p$      | $\sin 2\theta_{\Delta^{++}}$                              | $\sin \phi_p$  |
| -3/2           | $( A_{+} ^{2} -  A_{-} ^{2})Im(b_{1+}^{*}b_{2+} + b_{1-}^{*}b_{2-})$             | $\sin 2\theta_p$      | $(1-3\cos^2\theta_{\Delta^{++}})\sin\theta_{\Delta^{++}}$ | $\sin \phi_p$  |
| $3\sqrt{2}/2$  | $Im((A_{+}^{*}B_{-} - A_{-}^{*}B_{-})(b_{2+}^{*}b_{3-} + b_{2-}^{*}b_{3+}))$     | $\sin^2 \theta_p$     | $\sin^2 	heta_{\Delta^{++}}$                              | $\sin 2\phi_p$ |
| -9/4           | $( A_{+} ^{2} -  A_{-} ^{2})Im(b_{1+}^{*}b_{2-} + b_{1-}^{*}b_{2+})$             | $\sin^2 \theta_p$     | $\sin\theta_{\Delta^{++}}\sin2\theta_{\Delta^{++}}$       | $\sin 2\phi_p$ |


(日) (周) (日) (日) (日) (日) (000)

# Backup: Scaling Method for Energy Test

- The generation of permutations for Energy Test can be greatly sped up using Scaling Method
- The T value of the sample is calculated using all the events
- The CP symmetric T values of the permutation can be calculated using a small fraction of full sample
- This means it is permissible to run enough permutations to check results of  $5\sigma$  and above.
- The distribution of n\*T is independent of n, for moderate and large n, under the null hypothesis.
- https://arxiv.org/abs/1801.05222

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

# Backup: Scaling Method for Energy Test



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1= 990