

MoEDAL

Monopole and Exotics
Detector at the LHC

Lewis Millward l.millward@qmul.ac.uk

- MoEDAL Physics
- MoEDAL Detector
- Machine learning for MoEDAL

Magnetic Monopoles

1.millward@qmul.ac.uk

Many different predictions;

Dirac monopole [1931]

pointlike singularity modelled as infinitely long solenoid 'dirac string'

T'Hooft-Polyakov [1973] GUT

Topological soliton in fundamental gauge fields in theories with broken symmetries.

Cho, Maison [1996] EW modifications to SU(2) x U(1) electro-weak theory possibly allows TeV monopoles hybrid of Dirac / T'Hooft

Dyons, magnetic and electric

Common properties;

Acts like particle with magnetic charge. EM interaction with much stronger coupling! $g_D \sim 68.5e$

Mass ~ varies by theory, uncertain Unconstrained for Dirac monopoles EW 4~10TeV, Tevatron > 600GeV

Explains charge Quantisation, possibly baryon asymmetry, early cosmos

Stable if topological solitons

= Heavy, Stable, Highly Ionising

IOP HEPP APP 08/04/19

Exotics and HIPs

l.millward@qmul.ac.uk

Monopole signal = Heavy, Stable, Highly Ionising particle (HIP)

Similar BSM exotics;

Stable Massive particles SUSY; stops, staus, gluinos (esp. if parity conserved)

Multi-Charged particles eg, double charged Higgs Bilepton

No SM background for HIP signals High momenta + low β + highly ionising

Electronic Detectors optimised to trigger on light speed particles, which are minimally ionising

High LHC bunch crossing rate, most events discarded. Rare BSM signals can be missed

1.millward@qmul.ac.uk

LHC IP:8

LHCb

MMTs

Aluminium paramagnetic monopole trappers

NTD array + **VHCC**

Ionisation detectors (rest of this talk)

MoEDAL

Timepix

Radiation environment monitoring

MAPP

Millicharged particle detector

Moedal: NTD arrays

l.millward@qmul.ac.uk

Stacked Arrays of ionisation sensitive polymer solid state nuclear track detectors (NTDs) Sensitive to Heavily Ionising Particles, low sensitivity to standard model particles

NANOSCOPIC \longrightarrow MICROSCOPIC

Ionising particles break polymer chains in NTD foil in localised region

Leaves latent 'Ion track'

Chemical etching process occurs faster along ion tracks than bulk medium

Forms 'etch-pits' where ionising particles entered and exited the foil

Standard Model Ionisation Behavior

- Initial High energy causes minimal ionisation.
 Doesn't show up as etch p
- 2) Particle loses energy, lower velocity, efficient 'electronic' ionisation. 'Ranging in'
- 3) Reaches peak energy lost larger etch-pits form at point of entry and exit
- Energy loss, 'electronic' ionisation ceases, etch-pi formation stops. 'Ranging out'

In practice MoEDAL stacks designed so SM particles only appear in 1 or 2 foils typically ranging out (4)

IOP HEPP APP 08/04/19 1.millward@qmul.ac.uk

Particles in NTD stack

BEYOND

Standard Model Ionisation Behavior

- Initial High energy causes minimal ionisation. Doesn't show up as etch pit
- Particle loses energy, 2) lower velocity, efficient 'electronic' ionisation. 'Ranging in'
- Reaches peak energy loss, larger etch-pits form at point of entry and exit
- Energy loss, 'electronic' 4) ionisation ceases, etch-pit formation stops. 'Ranging out'

~ TeV Energy Momentum

Primary vertex origin

Direct search

No SM background

Courtesy INF Bologna

IOP HEPP APP 08/04/19

1.millward@qmul.ac.uk

#1: Training / Modelling

No 'real' magnetic monopole examples

to train from

Huge uncertainties, many parar Modelling + Monte-Carlo impractical

Calibrated heavy ions beams & LHC produces controlled HIP signal with magnified cross-section for ML RnD

Non-pertubative EM with Magnetic charge

#2: Background density

1.millward@qmul.ac.uk

CR39, Heavy ion test beam

Makrofol, heavy ion test beam + 8 months LHC background

LHC background pile-up increases with Lumi

LHC Exposure

Scale

O(100) m² macroscopic foil area
Trillions of etch-pits total
Problem changes as density increases
Images represent ~mm²
Millions of etch-pits in each cm²

Complications

Foil structure altered by γ – rays changes detector response Etch-pit clusters merge under etching Foil thickness fluctuates

#3: Accurate identification

Want to ID/tag peak ionisation events

Need robust signal efficiency and background rejection. - Minimise false positive rate

LHC particle flux; all different SM ionisation behaviour happening

Accurate ID requires detailed 3D inspection especially when pits start to cluster and overlap

Supervised learning only as good as its label accuracy.

Example

Entry Exit pair? Background cluster?

Strong Visual Symmetry between different physics objects / backgrounds

3D Dark-field imaging

1.millward@qmul.ac.uk

Want to probe microscopic 3D structure

to understand particle event

interpretation

And rapidly scan macroscopic area with minimal motion and large field of view

CAN parametrise illumination angle

LED grid, + Fresnell lens Allows control of θ , ϕ

Retain microscopic alignment of focal plain over macroscopic area

Example

X, Y, Phi becomes 3d data-space

Animation In-phase rotation common origin

Opposite phase possible entry exit

ML / CNN sees all angles at once

Entry exit pairs look different to overlapping bkg

Resolve different 3D structures

Spot anomalies or heavy ionisations

IOP HEPP APP 08/04/19 1.millward@qmul.ac.uk

ML – Training / Analysis

"Normalisation" - Redefine relative to local zero, 'clean' up low ionisation pits / de-clutter. Remove systematic imaging biases + non-etch pit visual backgrounds

Build supervised ML dataset from preselection. Train sub-classifiers, eg, entry exit asymmetry ~ dE/dx replace initial search with learnt models

Pre-select etch-pits reject trivial backgrounds reduce labelling, storage requirement ~ 1000

ML – Ensemble + inference

IOP HEPP APP 08/04/19

l.millward@qmul.ac.uk

Train specialist 'experts' to handle sub-classifications within set of 'signal like' etch pits Eg, top / bottom surface biased ionisation indicating SM range in/out

Expert Classifiers combined in ensemble to output overall classification

Robust + needs less training data

Geometric combination C' = C * C

$$C' = C_1 * C_2$$

vs arithmetic
 $C' = aC_1 + bC_2$

Can use in inference to ID etch-pits in new areas of foil

Can use stacked neural network, replace ensemble

- Moedal looks for Highly ionising high energy physics signitures
- No standard model background for HIP track
- Can use ML to automate + accelerate NTD analysis
- Subtle 3d info can help find interesting ionisation events
- Ensemble methods learn quicker with less data + more robust, easy to add new signals
- Push to higher bkg densities / lumi