

ELECTRON NEUTRINO SELECTION IN MICROBOONE

WOUTER VAN DE PONTSEELE - ON BEHALF OF THE MICROBOONE COLLABORATION

Joint APP and HEPP Annual Conference, Imperial College London April 10, 2019

University of Oxford, Harvard University

THE MICROBOONE EXPERIMENT

Physics goals

- Liquid Argon Time Projection Chamber (LArTPC) **R&D**.
- Adress electromagnetic **low-energy excess** observed by MiniBooNE.
- Cross-section measurements on argon.
- First step in the Fermilab short baseline neutrino program.

LIQUID ARGON TIME PROJECTION CHAMBER

LIQUID ARGON TIME PROJECTION CHAMBER

LIQUID ARGON TIME PROJECTION CHAMBER

MICROBOONE DATA EVENT

OPTICAL PRE-SELECTION: LIGHT RECONSTRUCTION

Flash selection

- Reconstruct a *Flash* coincident with the neutrino beam.
- Contains a **PMT photo-electron spectrum** corresponding to an interaction in the TPC.

OPTICAL PRE-SELECTION: MATCH LIGHT TO RECONSTRUCTED CANDIDATES

Pandora reconstruction framework creates multiple candidate interactions in the TPC. Only a neutrino interaction will likely coincide with the flash inside the beam window.

For all candidates, a flash hypothesis is created and compared with the optical flash.

TPC TOPOLOGY: ν_e CHARGED CURRENT FINAL STATES

- 1. Only one electron: $\nu_e \ CC \ 0\pi \ 0p$
 - · Significant contribution at low energy.
 - No vertex activity.
 - Hard to distinguish from single photon.

- 2. Additional protons: ν_e CC 0π Np
 - · Vertex activity reduces backgrounds.
 - Protons might be below reconstruction threshold.

- 3. Additional protons and/or pions: ν_e CC M π Np
 - Important for more energetic neutrino interactions, $\mathcal{O}(1\,\text{GeV})$ and higher
 - Typically more complex events with a lot of vertex activity.

TPC TOPOLOGY: ν_e CHARGED CURRENT FINAL STATES

- 1. Only one electron: $\nu_e \ CC \ 0\pi \ 0p$
 - Significant contribution at low energy.
 - No vertex activity.
 - Hard to distinguish from single photon.

- 2. Additional protons: ν_e CC 0π Np
 - Vertex activity reduces backgrounds.
 - · Protons might be below reconstruction threshold.
 - · Require one shower and at least one track.

- 3. Additional protons and/or pions: $\nu_e CC M\pi Np$
 - Important for more energetic neutrino interactions, $\mathcal{O}(1\,\text{GeV})$ and higher
 - Typically more complex events with a lot of vertex activity.

Electron Energy

- The proton energy is calculated using the reconstructed track length and the stopping power in liquid argon.
- 3. The reconstructed energy spectrum after pre-selection for ν_e CC 0 π Np candidates is the **electron and proton sum**:

Shower reconstruction and e/γ identification after pre-selection

Shower reconstruction and e/γ identification after pre-selection

Some cuts useful to select ν_e CC 0 π Np events can be inverted or modified

- Explore orthogonal regions of the phase-space.
- · Study important background events.
- Demonstrate data/MC agreement.

ν NC $\pi^{\rm 0}$ - enhanced

- 1. First cross-section measurements submitted for PRL publication:
 - $\cdot \
 u_{\mu}$ CC Inclusive
 - $\cdot \
 u_{\mu} \ {\it CC} \ \pi^{0}$
- 2. Strong demonstration of the low-energy-excess analysis strategies:
 - · Electron-like search with BNB
 - Photon-like search with BNB:
 - Deep learning based electron-like search with BNB
 - Electron-like selection using the NUMI off-axis beam

MICROBOONE-NOTE-1045-PUB MICROBOONE-NOTE-1041-PUB MICROBOONE-NOTE-1042-PUB MICROBOONE-NOTE-1054-PUB

MICROBOONE-NOTE-1045-PUB

MICROBOONE-NOTE-1032-PUB

CONCLUSION

- MicroBooNE just passed 3.5 years of stable data-taking, over 1.1 \times 10^{21} protons-on-target collected.
- Demonstrated low-energy excess strategy on unblinded data-set corresponding to 4.4×10^{19} protons-on-target
 - Optical pre-selection rejecting cosmic background.
 - 2. TPC topology to select ν_e CC.
 - 3. **Calorimetry** for particle-identification and energy reconstruction.

Selection on improved Monte Carlo in progress New results expected soon!

THANK YOU! & BACK-UP SLIDES The data shown here is an **unblinded sample** collected by the detector between February and April 2016. It corresponds to an exposure of 4.4×10^{19} protonsontarget of the booster neutrino beam.

Typical neutrino energy $\mathcal{O}(1 \text{ GeV})$, in this energy range, the neutrino interacts with the argon nuclei. This happens dominantly through quasi-elastic or meson-exchange processes. They can be split up in:

1. Charged current interactions

- Production of a lepton.
- Distinguish different flavours.

2. Neutral current interactions

- No lepton, exited nucleus.
- Identical for all neutrino flavours.

For the the verification of the electron hypothesis of MiniBooNE's low-energy excess, we are only interested in ν_e CC interactions.

 LSND experiment at Los Alamos observed excess of anti-electron neutrino events in the anti-muon neutrino beam.

2. MiniBooNE experiment

- Booster Neutrino Beam, 500 m.
- Filled with 800 ton of pure mineral oil.
- muons: clear filled Cerenkov rings.
- *e*/*γ*: Fuzzy Cerenkov rings.
- After 15 years of running: neutrino mode: (381.2 ± 85.2) excess (4.5σ).

