Measurement of the CP violating phase ϕ_s originating in $B_s^0 \rightarrow J/\psi\phi$ using LHCb Run 2 data [LHCb-PAPER-2019-013 (in preparation)]

Jennifer Zonneveld On behalf of the LHCb Collaboration

IoP Joint APP and HEPP Annual Conference 8th - 10th of April 2019

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 \to J/\psi K^+ K^-$ with Run 2 APP&HEPP, 10 April 2019 1 / 13

CP Violating Phase ϕ_s

$$\phi_s = \phi_{ ext{mixing}} - 2\phi_{ ext{decay}} \approx -2\beta_s = -2arg(rac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*})$$

- B_s^0 mesons have the possibility to **oscillate** into their anti-particles before decaying into CP eigenstates f_{CP}
- CP violating phase ϕ_s : phase difference due to **interference** between $b \rightarrow c\bar{c}s$ decays directly and via oscillation
- ϕ_s is precisely predicted assuming the SM, so New Physics particles could significantly affect the measurement

Current Results

- $\bullet\,$ Standard Model $\phi^{SM}_{s}=-36.9^{+1.0}_{-0.7}\,\,mrad\,\,[{\sf CKM}\,\,{\sf Fitter}]$ very precise
- Pre-Moriond World Average $\phi_{\rm s}^{\rm WA} = -21 \pm 31 \, {
 m mrad} \, [{
 m HFLAV}]$ consistent with SM prediction and dominated by LHCb
- At Moriond added Run 2 $B_s^0 \rightarrow J/\psi K^+ K^-$ [LHCb-PAPER-2019-013 (in preparation)]

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 o J/\psi K^+K^-$ with Run 2 APP&HEPP, 10 April 2019 3 / 13

Ingredients

- Fast $B_s^0 \bar{B}_s^0$ oscillation ($P = 2\pi/\Delta m_s \sim 350$ fs)
- Clearly visible in $B^0_s \to D^-_s \pi^+$
- What we measure experimentally:

 $\frac{\sin(\phi_s)(1-2\omega_{\text{tag}})D(\sigma_t)\sin(\Delta m_s t)}{2}$

- $sin(\phi_s)$ proportional to amplitude of the oscillation
- Diluted by wrong tagging probability ω_{tag}
- Good flavour tagging crucial to distinguish B_s^0 from \bar{B}_s^0
- Diluted by decay time resolution σ_t
- $\Delta m_s = m_H m_L$ mass difference between heavy and light B_s^0 mass eigenstates

Angular Analysis

- Final state B⁰_s → J/ψ(→ μ⁺μ⁻)φ(→ K⁺K⁻) is an admixture of CP-even and CP-odd final states → need analysis of decay angle distribution
- Three helicity angles, $\Omega = (\cos \theta_K, \cos \theta_\mu, \phi_h)$

• Separating even and odd states gives access to heavy Γ_H and light Γ_L B_s^0 lifetimes and the measurement of

$$\Gamma_s = \frac{\Gamma_H + \Gamma_L}{2} \qquad \qquad \Delta \Gamma_s = \Gamma_H - \Gamma_L$$

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 \rightarrow J/\psi K^+ K^-$ with Run 2 APP&HEPP, 10 April 2019 5 / 13

Analysis Strategy

- $B_s^0 \rightarrow J/\psi K^+ K^-$ has a large branching fraction and a large reconstruction efficiency
- Analyse 2015 ($\sim 0.3 \text{ fb}^{-1}$) and 2016 ($\sim 1.6 \text{ fb}^{-1}$) data to measure main parameters ϕ_s , $\Delta\Gamma_s$, $\Gamma_s \Gamma_d$
- Use **BDT** trained avoiding variables that could introduce decay-time bias and model **efficiencies** as a function of time and decay angles

Decay Time Efficiency

- Reconstruction efficiency **not constant** as a function of B_s^0 decay time
- Use control channel $B^0_d o J/\psi K^*(o K^+\pi^-)$
 - Well-known lifetime, high yield and similar kinematics
- Determine decay time efficiency $\varepsilon_{data}^{B_d^0}(t)$ using known lifetime $\tau(B_d^0)$
- Correction from simulation for kinematic differences between decays

$$arepsilon_{ ext{data}}^{\mathcal{B}_{ ext{s}}^{0}}(t) = arepsilon_{ ext{data}}^{\mathcal{B}_{ ext{s}}^{0}}(t) imes rac{arepsilon_{ ext{sim}}^{0}(t)}{arepsilon_{ ext{sim}}^{\mathcal{B}_{ ext{s}}^{0}}(t)}$$

• Final fit parameter $\Gamma_s - \Gamma_d$, where $\Gamma_d = 1/\tau(B_d^0)$

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 o J/\psi K^+ K^-$ with Run 2 APP&HEPP, 10 April 2019 7 / 13

Angular Efficiency

- LHCb geometry and selection introduce efficiency as function of decay angles, Ω = (cos θ_K, cos θ_µ, φ_h)
- Effect is modelled with **normalisation weights** for each **individual polarisation final state** determined from fully simulated events
- Simulation iteratively reweighted to correct for kinematic differences simulation/data

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 \to J/\psi K^+ K^-$ with Run 2 APP&HEPP, 10 April 2019 8 / 13

Flavour Tagging

- Flavour tagging crucial to determine B_s^0 flavour at production
- $b\bar{b}$ pair from pp will create signal B_s^0 and OS B decay
- s-partner from $B_s^0 s\bar{s}$ pair will create SS $K(\bar{s}u)$

• Taggers optimised using Neural Nets	Category	Faction
• OS taggers calibrated using $B^+ o J/\psi K^+$	OS-only SSK-only	14.59 54.75
• SSK tagger calibrated using $B^0 \rightarrow D^- \pi^+$	OS&SSK	30.65
• Join tagger calibrated using $D_s \rightarrow D_s$ in	Total	100

Category	$\operatorname{Faction}(\%)$	$\varepsilon(\%)$	D^2	$\varepsilon D^2(\%)$
OS-only	14.595	11.349	0.078	0.88 ± 0.04
SSK-only	54.751	42.574	0.032	1.38 ± 0.30
OS&SSK	30.654	23.837	0.104	2.47 ± 0.15
Total	100	77.760	0.061	4.73 ± 0.34

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 \to J/\psi K^+ K^-$ with Run 2 APP&HEPP, 10 April 2019

Decay Time Resolution

- Need well determined resolution to resolve fast B_s^0 oscillation (~ 350 fs)
- Extract resolution from prompt J/ψ data coming from pp interaction
- In 10 bins of uncertainty δ_t fit with triple Gaussian plus wrong PV and long lived components
- Dilution D translated into effective single Gaussian width $\sigma_{
 m eff}$

$$D = \sum_{i=1}^{3} f_i e^{-\sigma_i^2 \Delta m_s^2/2} \qquad \qquad \sigma_{\text{eff}} = \sqrt{\left(-2/\Delta m_s^2\right) \ln D}$$

• Final resolution $\delta_t = 45.54 \pm 0.04 \pm 0.05$ fs

10 / 13

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 \rightarrow J/\psi K^+K^-$ with Run 2 APP&HEPP, 10 April 2019

Results

- Decay-time and decay angle distributions for background subtracted $B^0_s \to J/\psi KK$ decays
- All CP eigenvalues are entangled for the fit: CP-even, CP-odd and S-wave (small fraction $\sim 2\%)$

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 \to J/\psi K^+ K^-$ with Run 2 APP&HEPP, 10 April 2019 11 / 13

• Results using 2015 (0.3 ${\rm fb}^{-1})$ and 2016 (1.6 ${\rm fb}^{-1})$ data [LHCb-PAPER-2019-013 (in preparation)] :

$$\begin{split} \phi_s &= -0.080 \pm 0.041 \pm 0.006 \text{ rad} \\ \Gamma_s - \Gamma_d &= -0.0041 \pm 0.0024 \pm 0.0015 \text{ ps}^{-1} \\ \Delta \Gamma_s &= 0.0772 \pm 0.0077 \pm 0.0026 \text{ ps}^{-1} \end{split}$$

- Most precise single measurement of ϕ_s
- To be compared to Run 1 (3 ${
 m fb}^{-1}$) statistical uncertainties:

•
$$\sigma_{
m stat}(\phi_s)=$$
 0.049 rad

•
$$\sigma_{\rm stat}(\Gamma_s) = 0.0027 \ {\rm ps}^{-1}$$

•
$$\sigma_{\rm stat}(\Delta\Gamma_s) = 0.0091 \ {\rm ps}^{-1}$$

Summary

• Run 2 $B_s^0 \to J/\psi K^+ K^-$ most precise single measurement of ϕ_s $\phi_s = -0.080 \pm 0.041 \pm 0.006 \text{ rad}$ $\Gamma_s - \Gamma_d = -0.0041 \pm 0.0024 \pm 0.0015 \text{ ps}^{-1}$ $\Delta \Gamma_s = 0.0772 \pm 0.0077 \pm 0.0026 \text{ ps}^{-1}$

Post-Moriond result (HFLAV, Preliminary) consistent with SM

Stay tuned for coming results! 2017 and 2018 data yet to be analysed!

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 \rightarrow J/\psi K^+K^-$ with Run 2 APP&HEPP, 10 April 2019 13 / 13

Thank you!

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 o J/\psi K^+K^-$ with Run 2 APP&HEPP, 10 April 2019 14 / 13

э

Combination of all LHCb ϕ_s Analyses

- Want to combine all available Run 1 (3 fb⁻¹) and Run 2 (1.9 fb⁻¹) LHCb results, e.g. $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$, $B_s^0 \rightarrow \psi(2S)\phi$
- Analyses sometimes overlap with methods and datasets used
 - Prompt J/ψ sample for decay-time resolution
 - $B^0_d
 ightarrow J/\psi K^*(892)$ for decay-time efficiency
- Potential systematic correlations taken into account
- Combination of all LHCb results yields:

$$\begin{split} \phi_s &= -0.040 \pm 0.025 \text{ rad} \\ \Gamma_s &= 0.6563 \pm 0.0021 \text{ ps}^{-1} \\ \Delta\Gamma_s &= 0.0812 \pm 0.0048 \text{ ps}^{-1} \end{split}$$

φ_s^{LHCb} 0.1σ away from SM prediction φ_sSM = -0.0369^{+0.0010}_{-0.0007} rad
 φ_s^{LHCb} 1.6σ away from zero → consistent with no CPV in interference between direct decay and after mixing

Selection

$\max(\chi^{2}_{TR}(K)) \qquad p_{T}(\phi)$ $\max(\chi^{2}_{TR}(\mu)) \qquad p_{T}(B^{0}_{s})$ $\min(\ln(\operatorname{ProbNNk}(K))) \qquad \chi^{2}_{VX}(B^{0}_{s})$ $\min(\ln(\operatorname{ProbNNmu}(\mu))) \qquad \ln(\chi^{2}_{IP}(B^{0}_{s}))$ $\ln(\chi^{2}_{ru}(I/\psi)) \qquad \ln(\chi^{2}_{ru}(B^{0}))$	BDT variables	
$(\lambda V X (3/\psi))$ $(\lambda D T F (2s))$	$\begin{array}{l} \max(\chi^2_{TR}(K)) \\ \max(\chi^2_{TR}(\mu)) \\ \min(\ln(\operatorname{ProbNNk}(K))) \\ \min(\ln(\operatorname{ProbNNmu}(\mu))) \\ \ln(\chi^2_{VX}(J/\psi)) \end{array}$	$p_{T}(\phi)$ $p_{T}(B_{s}^{0})$ $\chi^{2}_{VX}(B_{s}^{0})$ $\ln(\chi^{2}_{IP}(B_{s}^{0}))$ $\ln(\chi^{2}_{DTF}(B_{s}^{0}))$

Avoid variables with impact on angular or decay time acceptances

Optimised BDT cut at >0.58:

$$FOM = \frac{(\sum_i w_i)^2}{\sum_i w_i^2}$$

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 o J/\psi K^+ K^-$ with Run 2

- **HLT1** selection: Jpsi_Hlt1DiMuonHighMassDecision_TOS || B_Hlt1TrackMuonDecision_TOS || B_Hlt1TwoTrackMVADecision_TOS
- **HLT2** selection: Jpsi_Hlt2DiMuonDetachedJPsiDecision_TOS
- Trigger efficiency $\sim 98\%$ on signal MC
- **Stripping**: S28r1 (S24r1) StrippingBetaSBs2JpsiPhiDetachedLine for 2016 (2015)
- PIDCalib to match PID variables of MC with data
- Gradient Boosting Reweight MC in $p_T(B_s^0)$, $\eta(B_s^0) \chi^2_{TR}(\mu^{\pm})$, $\chi^2_{TR}(K^{\pm})$, nLongTracks
- **BDT** trained with 2016 MC (signal) and data sideband [5450,5550] MeV/ c^2 (background)

Systematics

Source	$ A_0 ^2$	$ A_{\perp} ^2$	ϕ_s	$ \lambda $	$\delta_{\perp} - \delta_0$	$\delta_{\parallel} - \delta_0$	$\Gamma_s - \Gamma_d$	$\Delta \Gamma_s$	Δm_s
			[rad]		[rad]	[rad]	[ps ·]	[ps ·]	[ps -]
Central value	0.5186	0.2457	-0.080	1.006	2.64	3.061	-0.0041	0.0772	17.705
Stat. error	+0.0029 -0.0029	+0.0040 -0.0040	+0.041 -0.041	+0.016 -0.015	+0.13 -0.13	+0.082 -0.074	+0.0024 -0.0023	+0.0076 -0.0077	+0.057 -0.060
Multiple candidates	0.00060	0.00012	0.0011	0.0011	0.0073	0.0021	0.00033	0.00011	0.0014
Mass factorisation	0.0002	0.0004	0.004	0.0037	0.0099	0.004	0.0007	0.0022	0.0156
Mass shape	0.0006	0.0005	-	-	0.0465	0.009	-	0.0002	0.001
Fit bias	0.0001	0.0006	0.001	-	0.022	0.033	-	0.0003	0.001
C_{SP} factors	-	0.0001	0.001	0.001	0.013	0.005	-	0.0001	0.002
Time res.: prompt	-	-	-	-	0.001	0.001	-	-	0.001
Time res.: statistical	-	-	-	-	-	-	-	-	-
Time res.: $\mu(\delta t)$	-	-	0.0032	0.001	0.080	0.001	0.0002	0.0003	0.005
Time res.: Wrong PV	-	-	-	-	0.001	0.001	-	-	0.001
Quadratic OS tagging	-	-	-	-	-	-	-	-	-
Ang. acc.: statistical	0.00030	0.00036	0.0011	0.0018	0.0025	0.0044	0.00003	-	0.0011
Ang. acc.: correction	0.00200	0.00112	0.0022	0.0043	0.0057	0.0077	0.00006	0.00021	0.0012
Ang. acc.: $t \& \sigma_t$ dependence	0.00084	0.00120	0.0012	0.0007	0.029	0.0055	0.00021	0.00095	0.0028
Dec. time acc.: knot pos.	-	-	-	-	-	-	0.00019	-	-
Dec. time acc.: p.d.f. reweighting	-	-	-	-	-	-	0.00007	0.00009	-
Dec. time acc.: kinematic reweighting	-	-	-	-	-	-	0.00021	-	-
Dec. time acc.: statistical	0.00020	0.00030	-	-	-	-	0.00120	0.00083	-
Dec. time acc.: Other MC sample	0.00012	0.00018	-	-	-	-	0.00031	0.00050	-
Length scale	-	-	-	-	-	-	-	-	0.004
BKGCAT==60	0.00019	0.00013	0.0005	0.0014	-	0.0017	0.00020	0.00012	-
Quadratic sum of syst.	0.0024	0.0019	0.0061	0.0064	0.1007	0.0365	0.0015	0.0026	0.0175

Systematics under control (most are < 10% of stat. uncertainty) ϕ_s mostly affected by mass factorisation and time resolution, $\Gamma_s - \Gamma_d$ by decay time efficiency, $\Delta\Gamma_s$ by mass factorisation $\Box \to \Box \to \Box \to \Box \to \Box$

Jennifer Zonneveld, University of Edinburgh ϕ_s from $B_s^0 \rightarrow J/\psi K^+ K^-$ with Run 2 APP&HEPP, 10 April 2019 18 / 13

Expected Precision $\phi_s^{c\bar{c}s}$ at LHCb

• Run 1 + 2015 and 2016 a total of 4.9 $\rm fb^{-1}.$ After Run 3 anticipate 23 $\rm fb^{-1}$ and after Run 5 (after Upgrade II) 500 $\rm fb^{-1}$

arXiv:1808.08865v3

• Expected precision after Upgrade II from $B_s^0 \rightarrow J/\psi \phi(\rightarrow K^+K^-)$ only $\sigma_{stat} = 4$ mrad and from all modes combined $\sigma_{stat} = 3$ mrad

HFLAV plot

$\phi^{SM}_{s} = -36.9^{+1.0}_{-0.7} \text{ mrad [CKM Fitter]}$ $\phi^{WA}_{s} = -49 \pm 23 \text{ mrad [HFLAV, preliminary]}$ LHCb

 J/ψφ [Phys. Lett. B757, 97 (2016)]

- $J/\psi\phi$ [PRL114, 041801 (2015)] and [LHCb-PAPER-2019-013 (in preparation)]
- J/ψπ⁺π⁻ [JHEP 08, 037 (2017)] and [arXiv:1903.05530]
- J/ $\psi K^+ K^-$ [Phys. Lett. B736, 186 (2014)]
- Ψ(2*S*)φ [Phys. Lett. B762, 253-262 (2016)]
- $D_s^+ D_s^-$ [PRL113, 211801 (2014)]

ATLAS

• $J/\psi\phi$ [JHEP 08, 147 (2016)] and [ATLAS-CONF-2019-009]