

Measurement of the Unitary Triangle angle γ using $B^{\pm} \rightarrow D^{*0}K^{\pm}$ decays at LHCb

IoP Joint HEPP and APP Annual Conference 2019

Alexandra Rollings on behalf of the LHCb Collaboration

University of Oxford

8th April 2019

The CKM Matrix

 Elements mediate the charged weak coupling between up-type and down-type quarks:

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

- Complex 3 x 3 unitary matrix parameterised by 3 rotation angles and one irreducible complex phase
 - Phase changes sign under the CP operator
 - Only known source of CP violation within the quark sector

The Unitary Triangle

• Unitary matrix:
$$\sum_{k=1}^{3} V_{ik} V_{jk}^* = \delta_{ij}$$

- Take dot product of 1st and 3rd columns:
 - $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
 - Triangle in the complex plane with sides and angles of similar size
 - All sides and angles can be measured independently
 - Over-constrain to test unitarity

3

 $(\bar{
ho}, \bar{\eta})$

The Unitary Triangle

• Unitary matrix:
$$\sum_{k=1}^{3} V_{ik} V_{jk}^* = \delta_{ij}$$

- Take dot product of 1st and 3rd columns:
 - $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
 - Triangle in the complex plane with sides and angles of similar size
 - All sides and angles can be measured independently
 - Over-constrain to test unitarity

•
$$\gamma = arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

 $(\bar{\rho}, \bar{\eta})$

Measuring γ using tree and loop-level decays

[http://ckmfitter.in2p3.fr]

- $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$
- Theoretically clean

4

Measuring γ using tree and loop-level decays

- No top quark; accessible via treelevel decays of *B* mesons
 - $\gamma = (72.1^{+5.4}_{-5.7})^\circ$
 - Theoretically clean

Measuring γ using tree and loop-level decays

- $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$
- Theoretically clean
- $(\bar{\rho}, \bar{\eta})$ apex can be constrained using loop-level decays
 - $\gamma = (65.64^{+0.97}_{-3.42})^{\circ}$

4

Measuring γ using tree and loop-level decays

- Aim: reduce uncertainty on tree-level measurement in order to verify compatibility or disagreement
- Method: combine interference from measurements of *CP*-violating observables from many tree-level *B* decays

Measuring γ with $B^{\pm} \rightarrow DK^{\pm}$ decays

Measuring γ with $B^{\pm} \rightarrow DK^{\pm}$ decays

- $b \to u$ transition in $B^- \to \overline{D}{}^0 K^-$ suppressed w.r.t. $b \to c$ transition in $B^- \to D^0 K^-$
 - 2 contributing B decays with amplitude ratio r_B , strong phase δ_B and weak phase γ
 - γ CP violates, therefore changes sign under charge conjugation!

Measuring γ with $B^{\pm} \rightarrow DK^{\pm}$ decays

- $b \to u$ transition in $B^- \to \overline{D}{}^0 K^-$ suppressed w.r.t. $b \to c$ transition in $B^- \to D^0 K^-$
 - 2 contributing B decays with amplitude ratio r_B , strong phase δ_B and weak phase γ
 - γ CP violates, therefore changes sign under charge conjugation!
- $D = D^0/\overline{D}^0$ decaying to the same final state with amplitude ratio r_D and phase δ_D
 - If the 2 paths proceed at similar rates, there will be a larger interference effect
 - Choose decay with $r_D \sim r_B$

The ADS Method

- $D^0 \to K^+\pi^-$, $\overline{D}{}^0 \to K^+\pi^-$ and charge conjugates
 - Former is doubly-Cabibbo suppressed w.r.t. the latter
- Look for differences in decay rates ($\Gamma \propto |\sum_i A_i|^2$) of B^- and B^+ mesons:

$$\Gamma(B^{\pm} \to DK^{\pm}) \propto r_D^2 + r_B^2 + 2r_D r_B \cos(\delta_B + \delta_D \pm \gamma)$$

Interference term enhanced when $r_D \sim r_B$

- $D^0 \to K^- \pi^+$, $\overline{D}{}^0 \to K^- \pi^+$ and charge conjugates
 - Former is doubly-Cabibbo suppressed w.r.t. the latter
- Look for differences in decay rates ($\Gamma \propto |\sum_i A_i|^2$) of B^- and B^+ mesons:

$$\Gamma(B^{\pm} \to DK^{\pm}) \propto r_D^2 + r_B^2 + 2r_D r_B \cos(\delta_B + \delta_D \pm \gamma)$$

The GLW Method

- D meson reconstructed in CP-even final states $D \to K^+K^-$ and $D \to \pi^+\pi^-$
 - $r_D = 1, \delta_D = 0!$ $\Gamma(B^{\pm} \to DK^{\pm}) \propto 1 + r_B^2 + 2r_B \cos(\delta_B \pm \gamma)$

The GLW Method

- D meson reconstructed in CP-even final states $D \to K^+K^-$ and $D \to \pi^+\pi^-$
 - $r_D = 1, \delta_D = 0!$ $\Gamma(B^{\pm} \to DK^{\pm}) \propto 1 + r_B^2 + 2r_B \cos(\delta_B \pm \gamma)$

 $B^{\pm} \rightarrow D^* K^{\pm}$

- Add a star to the D: select D^* vector meson \rightarrow same quark-level process
 - Two sub-decays: $D^{*0} \rightarrow D^0 \pi^0$ and $D^{*0} \rightarrow D^0 \gamma$
 - 2 final states have $180^{\circ} \delta_D$ difference opposite *CP*

 $B^{\pm} \rightarrow D^* K^{\pm}$

- Add a star to the D: select D^* vector meson \rightarrow same quark-level process
 - Two sub-decays: $D^{*0} \rightarrow D^0 \pi^0$ and $D^{*0} \rightarrow D^0 \gamma$
 - 2 final states have $180^{\circ} \delta_D$ difference opposite *CP*
- Effect on GLW method:

$$\Gamma(B^{\pm} \to (D^* \to D\pi^0/\gamma)K^{\pm}) \propto 1 + r_B^{D^*K^2} \pm 2r_B^{D^*K} \cos(\delta_B^{D^*K} \pm \gamma)$$

• Enhanced ADS method [Phys. Rev. D 70, 091503(R)]:

$$\Gamma(B^{\pm} \to (D^* \to D\pi^0/\gamma)K^{\pm}) \propto r_D^2 + r_B^{D^*K^2} \pm 2r_D r_B^{D^*K} \cos(\delta_B^{D^*K} + \delta_D \pm \gamma)$$

- 4 independent equations with 3 unknowns: extract γ directly!
- No current LHCb measurement using this method

• Partially reconstructed analysis: don't include the neutral in the final state, and select identically to $B^{\pm} \rightarrow DK^{\pm}$

- Partially reconstructed analysis: don't include the neutral in the final state, and select identically to $B^{\pm} \rightarrow DK^{\pm}$
 - Decays have distinctive shapes sitting below the B mass due to angular properties of D^{\ast} daughters
 - Low purity: many partially-reconstructed physics backgrounds sit low in B mass

- Partially reconstructed analysis: don't include the neutral in the final state, and select identically to $B^{\pm} \rightarrow DK^{\pm}$
 - Decays have distinctive shapes sitting below the B mass due to angular properties of D^{\ast} daughters
 - Low purity: many partially-reconstructed physics backgrounds sit low in B mass

Fully Reconstructed $B^{\pm} \rightarrow D^* K^{\pm}$

- Full reconstruction: missing neutral is found and selected
 - Due to limited reconstruction efficiency, expect lower statistics
- Reconstructing neutrals at LHCb is difficult due large backgrounds in the relatively coarse calorimetry:
 - $\varepsilon(\gamma) \sim 20\%$ [LHCb-DP-2012-002]
 - $\varepsilon(\pi^0) \sim 4\%$ [LHCb-DP-2012-002]

- Fully reconstructed analysis is in progress and awaits collaboration approval
 - An estimation of the LHCb sensitivity from Run I data ($\int \mathcal{L} dt = 3 \text{ fb}^{-1}$) of the high statistics $B^{\pm} \rightarrow D^* \pi^{\pm}$ mode is presented

- Useful to look in 2 dimensions: Δm vs. $m_{D^*\pi}$
 - $D^* \to D\gamma$: $\Delta m = m_{D^*} m_D$
 - $\nu \to \nu \gamma$: $\Delta m = m_{D^*} m_D$ $D^* \to D\pi^0$: $\Delta m = m_{D^*} m_D m_{\pi^0} + m_{\pi^0}^{PDG}$

Require true D^* to see a peak!

Select within *B* mass signal region...

	$B^{\pm} ightarrow (D^* ightarrow D\gamma) \pi^{\pm}$	$B^{\pm} ightarrow (D^* ightarrow D\pi^0)\pi^{\pm}$
Events: Run I (3 fb ⁻¹)	14 533 ± 180	12 351 ± 193

	$\int \mathcal{L} dt$	$B^{\pm} ightarrow (D^* ightarrow D\gamma) \pi^{\pm}$	$B^{\pm} ightarrow (D^* ightarrow D\pi^0)\pi^{\pm}$
Run I $B^{\pm} \rightarrow D^* \pi^{\pm}$	3 fb ⁻¹	14 533 ± 180 events	12 351 ± 193
$\operatorname{Run} \operatorname{I} B^{\pm} \to D^* K^{\pm}$	3 fb ⁻¹	\sim 1180 events	\sim 1050 events
$\operatorname{Run} \operatorname{I} B^{\pm} \to {D_{ADS}}^* K^{\pm}$	3 fb ⁻¹	\sim 18 events	\sim 16 events
Run I & II $B^{\pm} \rightarrow D_{ADS}^{*}K^{\pm}$	9 fb ⁻¹	\sim 90 events	\sim 80 events

• Row $1 \rightarrow 2: \frac{\mathcal{BF}(B^{\pm} \rightarrow D^*K^{\pm})}{\mathcal{BF}(B^{\pm} \rightarrow D^*\pi^{\pm})} \approx 0.081 \text{ (PDG)}$

- Row 2 \rightarrow 3: Scale to ADS suppressed mode: $R_{ADS} \approx 0.015$
- Extrapolations to Run II have been scaled by an additional factor of 2 due to:
 - Linear increase in $b\overline{b}$ cross-section with \sqrt{s}
 - Increased trigger efficiency

	$\int \mathcal{L} dt$	$B^{\pm} ightarrow (D^* ightarrow D\gamma) \pi^{\pm}$	$B^{\pm} ightarrow (D^* ightarrow D\pi^0)\pi^{\pm}$
2010: BaBar [arXiv:1709.10308v5]	0.5 ab ⁻¹	5.0 ± 6.4 events	10.3 ± 5.5 events
2020: Belle II	5 ab ⁻¹	\sim 50 events	\sim 100 events
2020: LHCb	9 fb ⁻¹	\sim 90 events	\sim 80 events

- Extrapolations made using predicted $\int \mathcal{L} dt$ for Belle II [arXiv:1709.10308v5]
 - Note: only an estimation of signal yields, not purity
- LHCb and Belle II have similar sensitivity on similar timescales to the full reconstruction of $B^{\pm} \rightarrow D^{*0}K^{\pm}$ decays
 - LHCb's partially reconstructed technique can bring additional information to the table

Thank you!

Back Up

Measurement using loop decays

- Δm_s and Δm_d from $B^0_{(s)}$ mixing
- ϵ_K from neutral kaon systems

Final states accessible to both D^0 and $\overline{D}{}^0$

- GLW: $D \rightarrow KK$, $\pi\pi$, $\pi\pi\pi\pi$, $KK\pi^0$, $\pi\pi\pi^0$
- ADS: $D \rightarrow \pi K$, $\pi K \pi \pi$, $\pi \pi \pi^0$
- GGSZ: $D \to K_S^0 \pi \pi, K_S^0 K K$ [JHEP 08 (2018) 176]
- GLS: $D \to K_s^0 K \pi$

- Life is never simple...
- Study favoured mode data $(D^0 \rightarrow K^+\pi^-)$ to help understand signal and background contributions:

• $D \rightarrow K^+K^-$ results:

• $D \rightarrow K^+K^-$ results:

• $D \rightarrow K^+K^-$ results:

• $D \rightarrow \pi^+\pi^-$ results:

• $D \rightarrow \pi^+ \pi^-$ results:

• $D \rightarrow \pi^+ \pi^-$ results:

• The observables give constraints on γ , along with the amplitude ratio $r_B^{D^{(*)}K}$ and strong phase difference $\delta_B^{D^{(*)}K}$:

LHCb and Belle II luminosity scenarios

			Milestone I	Milestone II	Milestone III
Year		2012	2020	2024	2030
LHCb	$\mathcal{L}[fb^{\text{-1}}]$	3	8	22	30
	$n(b\overline{b})$	0.3×10^{12}	1.1×10^{12}	37×10^{12}	87×10^{12}
	\sqrt{S}	7/8 TeV	13 TeV	14 TeV	14 TeV
Belle (II)	$\mathcal{L}[ab^{-1}]$	0.7	5	50	-
	$n(B\overline{B})$	0.1×10^{10}	$0.54 imes 10^{10}$	$5.4 imes 10^{10}$	-
	\sqrt{S}	10.58 GeV	10.58 GeV	10.58 GeV	-

[arXiv:1709.10308v5]

	$\int \mathcal{L} dt$	$B^{\pm} ightarrow (D^* ightarrow D\gamma) \pi^{\pm}$		$B^{\pm} ightarrow (D^* ightarrow D \pi^0) \pi^{\pm}$	
		$D \to K^+ K^-$	$D \to \pi^+ \pi^-$	$D \to K^+ K^-$	$D \to \pi^+ \pi^-$
Run I	3 fb ⁻¹	\sim 120 events	\sim 42 events	\sim 110 events	\sim 38 events
Run I & II	6 fb ⁻¹	\sim 600 events	\sim 210 events	\sim 550 events	\sim 190 events

Scaled to KK mode:
$$\frac{\mathcal{BF}(B^{\pm} \to D^* K^{\pm})}{\mathcal{BF}(B^{\pm} \to D^* \pi^{\pm})} \times \frac{\mathcal{BF}(D^0 \to K^+ K^-)}{\mathcal{BF}(D^0 \to K^+ \pi^-)} = 8.3 \times 10^{-3}$$

Scaled to $\pi\pi$ mode: $\frac{\mathcal{BF}(B^{\pm} \to D^*K^{\pm})}{\mathcal{BF}(B^{\pm} \to D^*\pi^{\pm})} \times \frac{\mathcal{BF}(D^0 \to \pi^+\pi^-)}{\mathcal{BF}(D^0 \to K^+\pi^-)} = 2.9 \times 10^{-3}$

	$n(B\overline{B})$	$B^{\pm} ightarrow (D^* ightarrow D\gamma) \pi^{\pm}$		$B^{\pm} ightarrow (D^* ightarrow D\pi^0)\pi^{\pm}$	
		$D \to K^+ K^-$	$D o \pi^+ \pi^-$	$D \to K^+ K^-$	$D \rightarrow \pi^+ \pi^-$
2010: BaBar [arXiv:0807.2408]	383×10^{6}	62 ± 12 events	15 ± 6 events	101 ± 14 events	31 ± 8 events
2020: Belle II	$0.54 imes 10^{10}$	\sim 870 events	\sim 210 events	\sim 1420 events	\sim 440 events

γ combination at LHCb

• World average dominated by the LHCb measurement: $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$:

Run I:	• 3 fb ⁻¹ of data at $\sqrt{s} = 7/8$ TeV	• $B^- \rightarrow DK^-$ ADS & GLS • $B^- \rightarrow DK^+\pi^-\pi^+$ GLW & ADS • $B^0 \rightarrow DK^{*0}$ ADS & GLW • $B^0 \rightarrow DK^+\pi^-$ GLW-Dalitz • $B_S^0 \rightarrow D_S^{\mp}K^{\pm}$ TD • $B^0 \rightarrow D^{\pm}\pi^{\mp}$ TD
Run I & Run II:	 3 fb⁻¹ of data at √s = 7/8 TeV 6 fb⁻¹ of data at √s = 13 TeV 	• $B^- \rightarrow DK^-$ GLW & GGSZ • $B^- \rightarrow D^*K^-$ GLW • $B^- \rightarrow DK^{*-}$ GLW & ADS

[LHCb-CONF-2018-002]

γ combination at LHCb

• World average dominated by the LHCb measurement: $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$:

[LHCb-CONF-2018-002]

γ combination at LHCb in the upgrade era

- 4° with Run II data (~ 9 fb⁻¹) [arXiv:1709.10308v5]
- 1.5° by the end of Run III (~ 22 fb⁻¹, 2024) [arXiv:1709.10308v5]
- < 1° by the end of Run IV (~ 50 fb⁻¹, 2029) [arXiv:1709.10308v5]
- ~0.4° in Phase II upgrade (~ 300 fb⁻¹, 2034) [CERN-LHCC-2017-003]