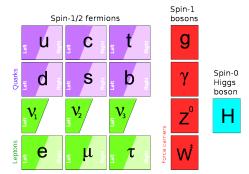
Approaching the neutrino mass problem with the DUNE Near Detector

Peter Ballett, Tommaso Boschi, Silvia Pascoli

Joint APP and HEPP Annual Conference 2019

April 9, 2019

Neutrino mass: the problem


- ν -fit 4.0 [2018] $\Delta m_{21}^2 = 7.39^{+0.21}_{-0.20} \times 10^{-5} \text{ eV}^2$ $|\Delta m_{31}^2| = 2.525^{+0.033}_{-0.031} \times 10^{-5} \text{ eV}^2$
- Planck [2018]

 $\sum m_
u < 0.12$ eV

• Troitsk [2011] with ${}^{3}\text{H}$ β decay $\sum |U_{e
u}|^{2}m_{
u} <$ 2.05 eV

Issues?

- No ν_R in the SM, so no Yukawa coupling
- A neutrino (~eV) is $< 2 imes 10^{-6} m_e$
- Dirac vs Majorana? LNV

Easy!

Add "right-handed" neutrinos!

Approach: Inverse seesaw model, ISS(*a*,*b*)

Extend the SM by adding singlet fermions $N_{i=1..a}$ with $+q_L$ and $S_{i=1..b}^c$ with $-q_L$

$$Y^{D}_{\alpha i}\overline{L_{\alpha}}\widetilde{H}N^{c}_{i} + Y^{R}_{\alpha i}\overline{L_{\alpha}}HS_{i} + \frac{1}{2}(M_{R})_{ij}\overline{N^{c}_{i}}N_{j} + \frac{1}{2}(\mu_{R})_{ij}\overline{N^{c}_{i}}N_{j} + \frac{1}{2}(\mu_{S})_{ij}\overline{S^{c}_{i}}S_{j} \text{ .h.c.}$$

Tommaso Boschi

Building observables: Majorana vs Dirac

• Decay: For a charged current process

 $\mathsf{d}\Gamma(N \to \ell_{\alpha}^{-}X^{+}) = \mathsf{d}\Gamma(N_{D} \to \ell_{\alpha}^{-}X^{+}) \quad \text{and} \quad \mathsf{d}\Gamma(N \to \ell_{\alpha}^{+}X^{-}) = \mathsf{d}\Gamma(\overline{N}_{D} \to \ell_{\alpha}^{+}X^{-})$

For a neutral current process

$$d\Gamma(N \to \nu Y) = d\Gamma(N_D \to \nu Y) + d\Gamma(\overline{N}_D \to \overline{\nu} Y)$$
$$\Downarrow$$
$$\Gamma(N \to \nu Y) = 2\Gamma(N_D \to \nu Y)$$

Practical Dirac-Majorana confusion theorem [Kayser, Shrock, '82]: factor of two enhancement is absent for light neutrinos, due to polarisation which suppresses $\Delta L = 2$ contributions However, if mass effect is not negligible, regardless of polarisation

Dirac and Majorana neutrinos have distinct total decay rates

 Production: only CC processes involved ⇒ no difference between Dirac and Majorana decay widths

Building observables: effect of helicity

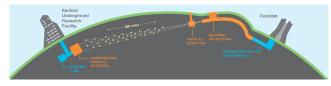
• Decays: are affected by helicity at the distribution level, different behaviour for Majorana or Dirac Total decays are not: arbitrariness of polarisation direction

NC decay to pseudo-scalar meson, for Majorana \Rightarrow isotropic

$$\frac{\mathrm{d}\Gamma_{\pm}}{\mathrm{d}\Omega_{P}} \Big(N \to \nu P^{0} \Big) \quad \propto \left(\sum_{\alpha=e}^{\tau} \left| U_{\alpha N} \right|^{2} \right) (1-x_{P})^{2}$$

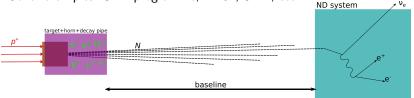
NC decay to pseudo-scalar meson, for Dirac \Rightarrow angular dependence

$$\frac{\mathrm{d}\Gamma_{\pm}}{\mathrm{d}\Omega_{P}}\left(\mathsf{N}_{D}\rightarrow\nu\mathsf{P}^{0}\right)\propto\left(\sum_{\alpha=e}^{\tau}\left|\mathsf{U}_{\alpha\mathsf{N}}\right|^{2}\right)(1-\mathsf{x}_{P})[1-\mathsf{x}_{P}\mp(1-\mathsf{x}_{P})\cos\theta]$$


• Production: processes are sensitive to helicity

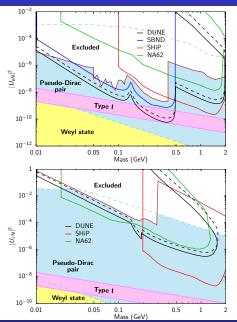
Using scale factor to model flux of HNL from flux of light neutrino to fix phase space and helicity

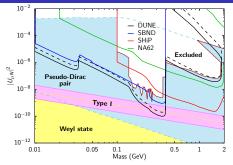
$$\mathcal{K}_{X,\alpha}^{\pm}(m_N) \equiv rac{\Gamma^{\pm}(X o NY)}{\Gamma(X o
u_{lpha}Y)}$$


unsuppression

Beam dump experiment: DUNE

80 GeV protons beam on graphite target, total of 1.32×10^{22} POT, for each FHC and RHC modes


- ND placed at 574 m vs FD at 1300 km: ν flux 5 \times 10⁶ times more intense!
- LArTPC is $(3 \times 3 \times 4)$ m³ by 50t + HPArFGT $(3.5 \times 3.5 \times 6.4)$ m³ by 8t (?)
- Other examples: SBN programme, NA62, SHiP, etc.



GENIE (background = SM neutrino interactions) + **custom MC** (signal = HLN decays) \Rightarrow **fast MC** of DUNE ND Reconstruction \Rightarrow particle identification + kinematic distribution \Rightarrow reduce background

Tommaso Boschi

Results: sensitivity to discovery

Sensitivity for channels with best prospect discovery:

$$\begin{array}{l} \nu e^+ e^-, \ \nu e^\pm \mu^\mp, \ \nu \mu^+ \mu^-, \ \nu \pi^0, \\ e^\mp \pi^\pm \ (|U_{eN}|^2 \ \text{only}), \ \text{and} \\ \mu^\mp \pi^\pm \ (|U_{\mu N}|^2 \ \text{only}) \end{array}$$

Results: sensitivity to LNV

Focus on $N \rightarrow \ell^{\mp} \pi^{\pm}$ channels: best sensitivity!

If HNL is Dirac (and if there is charge-ID in ND):

• FHC mode \Rightarrow more $\ell^-\pi^+$ (factor \sim 10)

Mass (GeV)

• RHC mode \Rightarrow more $\ell^+\pi^-$ (factor \sim 3 to 5)

- need to detect HNL first!
- need some statistics

Mass (GeV)

 10^{-2} 10^{-2} DUNE DUNE 10^{-4} SBND 10^{-4} SBND SHiP Excluded SHiP NA62 NA62 Excluded 10^{-6} 10^{-6} $|U_{\mu N}|^2$ $|U_{eN}|^2$ Pseudo-Dirac Pseudo-Dirac pair 10^{-8} pair 10^{-8} Type I Type I 10^{-10} 10^{-10} Weyl state Weyl state 10^{-12} 10^{-12} 0.5 0.5 0.05 0 1 1 2 0.01 0.05 0 1 1 2 0.01

If HNL is Majorana
$$\Rightarrow$$
 same rate of $\ell^-\pi^+$ and $\ell^+\pi^-$

Conclusions

- Varieties of model can address the neutrino problem
- Inverse seesaw mechanism provides also testable observables
- Helicity/polarisation are important!
- DUNE ND is very sensitive and can "close the gap"
- If we see a HNL, this can be explained by a low scale mass models
- With good statistics, we can determine if it is majorana or Dirac

If we don't see anything

- more powerful experiment?
- new techniques?

• better theory?

Efforts from all sides needed!

Thank you.