IOP Joint APP and HEPP Conference 08-10 April 2019, Imperial College London, London, UK

Search for chargino and neutralino production in final state with three leptons and missing transverse momentum, via Wh intermediate decays

Fabrizio Trovato

UNIVERSITY

OF SUSSEX

Outline

- Physics motivations and scenario of this search
 - What are the motivations?
 - (BSM) searches
- Wh searches at Run2
 - The state of the art
 - the final state
 - Eye to the future
 - Preparation of full Run2 analysis

- Where this analysis stands among all of the so-called Beyond the Standard Model

- First Run2 results of electroweak Wh-mediated analysis with three leptons (3L) in

What are the motivations?

Physics scenario

Searching for New Physics with SUSY

Among all the possible BSM scenarios, SUSY is a theory which predicts a symmetry between fermions and bosons

$$^{*}R = (-1)^{3(B-L)+2s}$$

B - *baryonic* number *L* - *leptonic* number s - spin

F. Trovato (fabrizio.trovato@cern.ch)

principle

- SUSY particles are produced in pairs and the Lightest SUSY Particle (LSP) is stable
- The weakly interacting lightest neutralino is often the stable LSP, hence it is a good Dark Matter candidate

Winos, binos and higgsinos mix to form mass states charginos and neutralinos

- SM hierarchy problem
- Dark matter
- Grand Unification
- It's beautiful!

IOP joint APP and HEPP conference, 08-10 April 2019

Electroweak (EWK) SUSY al LHC and ATLAS

- Electroweak production cross-section (e.g, chargino/neutralino pair) lower than for Strong production
- If squarks and gluinos are very heavy (as recent results suggest), EWK production becomes dominant if chargino and neutralinos masses around electroweak scale (naturalness considerations)

F. Trovato (fabrizio.trovato@cern.ch)

IOP joint APP and HEPP conference, 08-10 April 2019

Control and suppression of Standard Model background processes is a crucial step in any SUSY analysis

From MSSM to simplified models

F. Trovato (fabrizio.trovato@cern.ch)

IOP joint APP and HEPP conference, 08-10 April 2019

In a simplified model, some parameters of the MSSM are fixed and others (some SUSY particle masses) are allowed to vary; individual channels are then explored one-by-one

Chargino/neutralino decays via W and Higgs bosons

• RPC simplified model of pair production of mass degenerate chargino/neutralino, decaying to W and Higgs bosons and lightest neutralinos (assumed 100% BR)

 $\tilde{\chi}_2^0 \rightarrow h \tilde{\chi}_1^0$ dominant for various choices of SUSY parameters and if

- The mass-splitting of the two lightest neutralinos is larger than the Higgs boson mass
- Chargino/neutralino are mostly winos
- Possible signatures depend on the SM particles W and Higgs bosons decay into
 - e.g., multileptonic: 2LSS,(3L) and 1Lbb
 - Allow the exploration of mass-splittings very close to the Higgs boson mass, started already at 8 TeV

Analysis strategy: "conventional" approach

Signal regions (SRs)

Cut-n-count **optimisation** of cuts that permit a good signal/background discrimination

Control regions (CRs)

Control of **irreducible background** in dedicated background-dominated regions

Estimation of **reducible background** with dedicated data-driven techniques

Validation regions (VRs)

Validation of background estimation

"Unblinding" look for data excesses in the signal regions

F. Trovato (fabrizio.trovato@cern.ch)

IOP joint APP and HEPP conference, 08-10 April 2019

Fake/non-prompt (FNP)

The state of the art

First Run2 Wh3L analysis results

https://arxiv.org/abs/1812.09432

Run2 Wh3L results with 36.1 fb⁻¹

• The C1/N2 Wh-mediated analysis has first Run2 results, along with four other Wh channels: full-hadronic, 1Lbb (see Matt Sullivan's talk), 1Lyy, 2LSS

- Paper submitted to PRD and available in <u>arXiv:1812.09432</u>
- 3L and 2LSS presented common challenges and were harmonised in object definition and shared same method for FNP background estimation

Wh3L Event selection strategy

- Events with exactly three leptons are categorised it flavour and sign combinations
 - At least one pair of same-flavour and opposite-sign (SFOS) leptons, invariant mass outside a 20 GeV window around the Z boson mass
 - Diboson WZ (dominant) ----> Irreducible
 - Z boson + jets ----> Reducible
 - A pair of same-flavour and same-sign leptons, plus an additional lepton differentflavour and opposite sign (DFOS)
 - Pair production of top quarks ----> Reducible
 - Diboson WZ (not dominant) -----> Irreducible

Signal regions definitions

- Further binning is applied considering jet multiplicity missing transverse energy (MET) For DFOS selection angular variables are used

 - For SFOS the transverse mass of the third lepton not in the SFOS pair is minimised

https://arxiv.org/abs/1812.09432				432	
Variable	SR3L-DFOS-0J	SR3L-DFOS-1Ja	SR3L-DFOS-1JI	b	1+
$N_{\rm jet} \ (p_{\rm T} > 20 \ GeV)$	= 0	> 0	> 0		
N_{b-jet}	= 0	= 0	= 0		
$E_{\rm T}^{\rm miss}$ [GeV]	> 60	$\in [30, 100]$	> 100		$\lambda \Delta \phi_{SS}$
$m_{\ell_{\rm DFOS} + \ell_{\rm near}}$ [GeV]	< 90	< 60	< 70		
$\Delta R_{ m OS,near}$	_	< 1.4	< 1.4		MET
$\Delta \phi_{\rm SS}$	-	-	< 2.8		(h)/
				https://arxiv.org/abs/1812.09432	+
Variable	SR3L-SFOS-	0Ja SR3	L-SFOS-0Jb	SR3L-SFOS-1J	
$N_{ m jet}~(p_{ m T}>20~GeV)$	= 0		= 0	> 0	$\Delta R_{OS,near}$
N_{b-jet}	= 0		= 0	= 0	1±
$E_{\rm T}^{\rm miss}$ [GeV]	$\in [80, 120]$]	> 120	> 110	
$m_{\rm T}^{\rm min}$ [GeV]	> 110		> 110	> 110	
$m_{ m SFOS}^{ m min}$	$> 20 \ GeV, \notin [81.2]$	2,101.2] > 20 Ge	$V, \notin [81.2, 101.2]$	$> 20 \ GeV, \notin [81.2, 101.2]$	

https://arxiv.org/abs/1812.09432				432	
Variable	SR3L-DFOS-0J	SR3L-DFOS-1Ja	SR3L-DFOS-1JI	b	1+
$N_{\rm jet} \ (p_{\rm T} > 20 \ GeV)$	= 0	> 0	> 0		
N_{b-jet}	= 0	= 0	= 0		
$E_{\rm T}^{\rm miss}$ [GeV]	> 60	$\in [30, 100]$	> 100		$\lambda \Delta \phi_{SS}$
$m_{\ell_{\rm DFOS} + \ell_{\rm near}}$ [GeV]	< 90	< 60	< 70		
$\Delta R_{ m OS,near}$	_	< 1.4	< 1.4		MET MET
$\Delta \phi_{ m SS}$	_	-	< 2.8		(h)/
				https://arxiv.org/abs/1812.09432	+
Variable	SR3L-SFOS-	0Ja SR3	L-SFOS-0Jb	SR3L-SFOS-1J	
$N_{ m jet}~(p_{ m T}>20~GeV)$	= 0		= 0	> 0	$\Delta R_{OS,near}$
$N_{b ext{-jet}}$	= 0		= 0	= 0	1±
$E_{\rm T}^{\rm miss}$ [GeV]	$\in [80, 120]$]	> 120	> 110	
$m_{\rm T}^{\rm min}$ [GeV]	> 110		> 110	> 110	
$m_{ m SFOS}^{ m min}$	$> 20 \ GeV, \notin [81.$	2,101.2] > 20 Ge	$V, \notin [81.2, 101.2]$	$> 20 \ GeV, \notin [81.2, 101.2]$	

F. Trovato (fabrizio.trovato@cern.ch)

Background estimation

- Cross-section of irreducible background WZ is normalised in a dedicated CR
- FNP estimated with a data-driven technique (Dynamic Matrix Method), which relates the number of FNP leptons to the number of leptons which pass a specific tight or loose selection

F. Trovato (fabrizio.trovato@cern.ch)

Results

• No significant deviations from SM expectation found :(

		SR channels			SR						
		Observed events									
		Fitted bkg eve	nts								
		\overline{WZ}									
		ZZ									
		$t\overline{t} + V$									
		Tribosons									
		Higgs SM									
		FNP									
_	_	https://arx	iv.org/abs	\$/1812.09	432						
Ge	E	ATLAS	• Data	ZZ	_						
20	10 -	√s = 13 TeV, 36.1 fb ⁻⁺ SB3L-DEOS-1.lb	Total SM	ttV ot 🔲 Higgs SM	1 -						
ts /	Ē	m,	wz	Triboson							
ven	E	1,500,+1mm	$\cdots m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) -$	(150,0) GeV	-						
Ш	1		$(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^{0},\widetilde{\chi}_1^{0}) =$	(152.5,22.5) GeV							
	'E.										
	E.				-						
					-						
	10-'		<u>If an </u>								
SM	1.5										
)ata/	1										
	0.5				<i>1111</i>						
	0	40 80	120	160 m, , [G	200 eV]						
			IOP ioin	t ΔDD and	Ч Н Е						

F. Trovato (fabrizio.trovato@cern.ch)

SR3L-SFOS-1J 3L-DFOS-1Jb https://arxiv.org/abs/1812.09432 11 11.5 ± 2.6 1.7 ± 0.7 0.54 ± 0.16 7.4 ± 2.3 0.29 ± 0.09 0.03 ± 0.01 0.43 ± 0.16 1.9 ± 0.5 0.23 ± 0.08 1.4 ± 0.4 0.05 ± 0.04 1.4 ± 0.4 $0.4^{+0.5}_{-0.4}$ $0.4^{+0.6}_{-0.4}$ https://arxiv.org/abs/1812.09432 **ATLAS** √s = 13 TeV, 36.1 fb⁻¹ ZZ Data 10⁴ ¯tī∨ \ Total SM 📃 Non-prompt 📃 Higgs SM SR3L-SFOS-1J 10³ Triboson WZ ••••• $m(\tilde{\chi}_{1}^{L}/\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0})$ =(150,0) GeV

Setting limits to the models

 Wh3L shows potential search scope alor of compressed spectra

Wh3L shows potential search scope along the diagonal, contributing to the exploration

Eye to the future

Perspectives on full Run2 Wh3L analysis

Moving the Wh3L analysis to the full Run2 dataset

- Following the first round of analysis, the aim is to improve the sensitivity
- Despite the obvious gain coming from the larger data sample, other improvements are being worked on:

 - Revised optimisation WRevised object definitions and background estimation Harmonisation to the search for WZ-mediated decays of $\tilde{\chi}_2^0$ electroweakinos p
 - - The two analyses are expected to present similar challenges, while targeting different physics scenarios

Conclusions and outlook

- - https://arxiv.org/abs/1812.09432
 - Potential reach along the diagonal
- Wh₃L performs best for smaller C₁/LSP mass splittings
 - There is scope to improve overall sensitivity in that area of the parameter space
 - The analysis to full Run2 dataset is on-going
- For the longer term, the Wh3L analysis will be essential (in combination with other channels) to explore challenging SUSY scenarios with electroweak cross-sections

Wh3L analysis published with 36.1 fb⁻¹ Run2 dataset, in conjunction with other channels

MSSM mass states

Names	Spin	P_R	Gauge Eigenstates Mass Eigenstates	
Higgs bosons	0	+1	$H_{u}^{0} H_{d}^{0} H_{u}^{+} H_{d}^{-}$	$h^0 H^0 A^0 H^{\pm}$
			$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)
squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$
			$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)
sleptons	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)
			$\widetilde{ au}_L \widetilde{ au}_R \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_ au$
neutralinos	$ \text{eutralinos} 1/2 -1 \widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d $		$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$	
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^\pm \widetilde{C}_2^\pm
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)

F. Trovato (<u>fabrizio.trovato@cern.ch</u>)

CR definition

Baseline leptons Signal leptons Flavour/sign b-tagged jets $p_{\mathrm{T}}^{-3rd~\ell}$ $E_{\mathrm{T}}^{\mathrm{miss}}$ $m_{\ell\ell\ell}$ m_{SFOS}^{min}

F. Trovato (fabrizio.trovato@cern.ch)

Results: SR pulls

https://arxiv.org/abs/1812.09432

		A					
SR channels	SR3L-DFOS-0J	SR3L-DFOS-1Ja	SR3L-DFOS-1Jb	SR channels	SR3L-SFOS-0Ja	SR3L-SFOS-0Jb	SR3L-SFOS-1J
Observed events	0	7	1	Observed events	0	3	11
Fitted bkg events	2.1 ± 1.0	8.3 ± 3.8	1.7 ± 0.7	Fitted bkg events	3.8 ± 1.7	2.4 ± 1.0	11.5 ± 2.6
WZ	0.18 ± 0.13	1.01 ± 0.27	0.54 ± 0.16	WZ	2.5 ± 1.2	2.0 ± 0.9	7.4 ± 2.3
ZZ	0.0017 ± 0.0012	0.06 ± 0.02	0.03 ± 0.01	ZZ	0.10 ± 0.04	0.07 ± 0.02	0.29 ± 0.09
$t\bar{t} + V$	0.0013 ± 0.0013	0.79 ± 0.29	0.43 ± 0.16	$t\bar{t} + V$	0.09 ± 0.03	0.02 ± 0.01	1.9 ± 0.5
Tribosons	0.52 ± 0.28	0.66 ± 0.22	0.23 ± 0.08	Tribosons	0.57 ± 0.29	0.16 ± 0.08	1.4 ± 0.4
Higgs SM	0.39 ± 0.15	$0.1^{+0.5}_{-0.1}$	0.05 ± 0.04	Higgs SM	$0.24^{+0.25}_{-0.24}$	0.07 ± 0.07	0.07 ± 0.04
FNP	1.0 ± 0.9	5.6 ± 3.8	$0.4^{+0.6}_{-0.4}$	FNP events	$0.27_{-0.27}^{+0.31}$	$0.11\substack{+0.20\\-0.11}$	$0.4^{+0.5}_{-0.4}$

F. Trovato (fabrizio.trovato@cern.ch)

https://	/arxiv.org/	/abs/1	1812.0	9432
----------	-------------	--------	--------	------

https://arxiv.org/abs/1812.09432

IOP joint APP and HEPP conference, 08-10 April 2019

Results: limits

F. Trovato (fabrizio.trovato@cern.ch)

IOP joint APP and HEPP conference, 08-10 April 2019

