Search for dark matter produced in association with bottom or top quarks with the ATLAS detector

Eddie Thorpe on Behalf of the ATLAS Collaboration

Queen Mary University of London

April 9, 2019

DM+HF @ ATLAS

Introduction

- I will present the results of a search for dark matter produced in association with bottom or top quarks with the ATLAS detector detailing:
 - Motivation
 - Signal models & characteristic signatures
 - Backgrounds & background estimation strategy
 - Signal region results
 - Limits and interpretation
 - Current status of the analysis
 - Ongoing improvements
 - Summary and Conclusions

Motivation

- evidence for dark matter (DM):
 - Galactic Rotation Curves
 - Cosmic Microwave Background
 - Galactic Clusters

 - etc...

Weakly interacting massive particles (WIMPs) are possible DM candidates

 can then search for WIMP pair production in pp collisions

・ロト ・四ト ・ヨト ・ヨト ・ヨー

Eddie Thorpe (QMUL)

DM+HF @ ATLAS

April 9, 2019 3 / 22

Theoretical Motivation

- Proposed simplified benchmark models assume existence of SM-DM mediator.
 - replacing effective field theories used in Run 1
- assume minimal flavour violation → interaction between new neutral spin-0 state and SM ∝ fermion masses via Yukawa-type couplings
- large production of colour neutral mediators :
 - through loop induced gluon fusion
 - in a association with heavy flavour quarks
- search for DM in association with b and t quarks
- define:
 - SM \leftrightarrow DM-mediator coupling = g_{ν}
 - DM-mediator \leftrightarrow DM coupling = g_{χ}
- set g_ν = g_χ = g
- set g = 1

bb Signatures

- signatures:
 - $b\bar{b}$ with associated production of dark matter scalar/pseudoscalar mediator ϕ/a (DM $b\bar{b}$)
 - colour charged scalar mediator decaying into a *b*-quark and a DM candidate (*b*-FDM)
- signatures characterised by:
 - high missing transverse momentum (MET)
 - b-jets (1 or 2 at leading order)

$t\bar{t}$ Signatures

- signatures:
 - $t\bar{t}$ with associated production of dark matter scalar/pseudoscalar mediator ϕ/a where the *t*-quarks decay:
 - fully hadronically (DMttol)
 - fully leptonically $(DMt\bar{t}2l)$
- signatures characterised by:
 - high missing transverse momentum (MET)
 - b-jet multiplicity (at least 2 at leading order)
 - leptons (DMtt
 t
 2l only)

leeeeer **∮/a** leeeee φ/a 000000

Analysis Strategy

- define signal regions which are regions of phase-space that are expected to be high in signal with as little background contamination as possible
- use a combination of Monte Carlo (MC) simulated data and a strategy of 'control regions' and 'validation regions' to estimate and validate background contributions in signal regions
- use MC simulated data to estimate the contribution of DM signal in signal regions
- place limits on DM↔SM couplings based on the difference between the observed data and MC simulated data

Background Estimation Strategy

define a control region (CR) per background that is:

- kinematically similar to the signal region (SR)
- orthogonal to SR
- dominant in a particular background
- then fit the background to the data in that CR
- define a validation region (VR) per background that is:
 - also kinematically similar to SR
 - closer to SR than CR
 - orthogonal to both CR and SR
- apply µ_{bkg} in VR as test
- apply in SR
- this can then be done for several CRs simultaneously to estimate several backgrounds in SR
- main advantage of CR strategy is to reduce the impact of systematic uncertainties in SRs

ヘロト 人間 とくほとく ほど

Backgrounds

• Z+jets :

- o dominant for: DMbb and b-FDM
- t:

- subsubdominant for: $DMb\bar{b}$ and b-FDM
- fakes (from jets, leptons produced in hadron decays and photon conversion): subsubdominant for DMt*ī*2l

• $t\bar{t}$:

- dominant for $DMt\bar{t}0l$ and $DMt\bar{t}2l$
- subdominant for: $DMb\bar{b}$ and b-FDM

• $t\bar{t}Z$:

• subdominant for DMttol and DMtt2l

Control & Validation Region Post-fit Results

• all VRs yield data consistent with MC within at least 2σ (mostly $< 1\sigma$)

Eur. Phys. J. C 78 (2018) 18

DMbb & b-FDM Results

- SRb1 signal region optimised for *b*-FDM
- SRb2 signal region optimised for DMbb
- data compatible with predictions
- excesses seen, but always within 1.3σ
- first ATLAS Results on $b\bar{b} + \phi/a!$
- errors in table are statistical+systematic

	SRb1	SRb2-bin1	SRb2-bin2	SRb2-bin3	SRb2-bin4
Observed	19	88	88	90	82
Total background (fit)	16.9 ± 3.3	77 ± 13	72 ± 11	76 ± 13	66.4 ± 9.1
Z/γ^* + jets	14.2 ± 3.1	39.7 ± 6.3	44.4 ± 6.6	53.3 ± 9.9	55.6 ± 8.6
tī	$0.58^{+0.60}_{-0.58}$	17.8 ± 6.5	13.8 ± 5.5	14.0 ± 4.7	7.0 ± 2.9
Single top quark	$0.25^{+0.42}_{-0.25}$	14.7 ± 5.8	10.2 ± 3.7	5.5 ± 3.1	2.6 ± 1.7
Others	2.0 ± 1.1	5.2 ± 3.4	$3.4^{+1.7}_{-1.6}$	2.7 ± 1.1	1.3 ± 1.0
Z/γ^* + jets (pre-fit)	12.1	30.6	34.2	41.1	42.8
tī (pre-fit)	-	27.1	21.1	21.4	10.6
Signal benchmarks					
$m(\phi, \chi) = (20, 1) \text{ GeV}, g = 1$		0.238 ± 0.085	0.262 ± 0.079	0.320 ± 0.082	0.277 ± 0.080
$m(a, \chi) = (20, 1) \text{ GeV}, g = 1$		0.256 ± 0.065	0.199 ± 0.060	0.308 ± 0.085	0.267 ± 0.067
$m(\phi_b, \chi) = (1000, 35) \text{ GeV}$	18.6 ± 3.8				

Eur. Phys. J. C 78 (2018) 18

Eur. Phys. J. C 78 (2018) 18

Image: Image:

Eddie Thorpe (QMUL)

$DMt\bar{t}0l$ & $DMt\bar{t}2l$ Results

- SRt1 & SRt2 signal regions optimised for low high mediator mass DMttol models respectively
- SRt3 signal region optimised for DMtt2l
- excesses seen again, but always within 1.3σ
- errors in table are statistical+systematic

	SRt1	SRt2	SRt3
Observed	23	24	18
Total background (fit)	20.5 ± 5.8	20.4 ± 2.9	15.2 ± 4.3
tī	7.0 ± 3.9	3.1 ± 1.3	4.5 ± 2.5
tī+Z	4.3 ± 1.1	6.9 ± 1.4	4.4 ± 1.9
W+jets	3.3 ± 2.6	1.28 ± 0.50	incl. in Fakes/NP
Wt	incl. in Others	incl. in Others	0.33+0.53
Z/γ^* + jets	3.7 ± 1.4	6.2 ± 1.1	incl. in Others
VV	incl. in Others	incl. in Others	0.61 ± 0.25
Fakes/NP	-	-	2.7 ± 1.3
Others	2.2 ± 1.2	3.00 ± 1.6	2.69 ± 0.93
tī (pre-fit)	6.1	2.8	4.0
$t\bar{t}+Z$ (pre-fit)	3.53	5.6	5.6
Z/γ^* + jets (pre-fit)	3.2	5.72	-
Signal benchmarks			
$m(\phi, \chi) = (20, 1) \text{ GeV}, g = 1$	9.3 ± 1.6	12.8 ± 1.9	21.0 ± 2.3
$m(a, \chi) = (20, 1) \text{ GeV}, g = 1$	7.6 ± 1.5	12.1 ± 1.8	14.1 ± 1.6
$m(\phi, \chi) = (100, 1) \text{ GeV}, g = 1$	6.5 ± 1.3	10.1 ± 1.5	11.5 ± 1.5
$m(a, \chi) = (100, 1) \text{ GeV}, g = 1$	6.2 ± 1.2	11.5 ± 2.0	11.9 ± 1.5

Eur. Phys. J. C 78 (2018) 18

Eur. Phys. J. C 78 (2018) 18

Eddie Thorpe (QMUL)

Limits

• most stringent limits on $t\bar{t} + \phi/a$

• limits for on shell $t\bar{t}+\phi/a$ decays constant for $m_{\phi}<100$ GeV

• SRT3 excludes excludes g = 1 for scalar mediator masses < 50 GeV

 for bottom-like signal regions, limits set of ~300x production x-sec for mediator mass between 10 and 50 GeV

Limits

- model-independent limits on production x-sec of colour-neutral scalar mediator particles converted to limit on spin-independent DM-nucleon scattering
- the results can then be compared with the results from direct-detection experiments
- SRt3 places the most stringent limit and so is used here

 for a DM particle of ~ 35 GeV, as suggested by Fermi-LAT Collaboration, mediator masses below 1.1_TeV are excluded at 95% CL

- DM $b\bar{b}$ and 'sbottom' (supersymmetric partner to the bottom quark) signals both have leading order final states containing 2 *b*-jets and E_T^{miss} and so are performed in the same framework under 'bbMET'
- DM $t\bar{t}$ and 'stop' (supersymmetric partner to the top quark) signals both have leading order final states containing at least 2 *b*-jets and E_T^{miss} therefore:
 - DM $t\bar{t}0l$ and stop 0I are performed in the same framework => ttMET0I
 - DM $t\bar{t}2l$ and stop 2I are performed in the same framework => ttMET2I
- *b*-FDM models have fallen out of favour due constraints placed by astrophysical observations
- currently in R&D stage of full Run2 ($\sim 150 \text{ fb}^{-1}$) bbMET paper

Ongoing Improvements

- BDTs
 - improve background discrimination in signal regions

- increased luminosity
 - $36fb^{-1} \to 139fb^{-1}$
- soft b-tagging
 - improve sensitivity in regions with a small mass splitting
 - b-tagging on track jets
 - secondary Vertex Tagging

Particle flow Jets

- improved energy resolution
- lower fake rate

Eur. Phys. J. C 77 (2017) 466

April 9, 2019 16 / 22

Conclusions

- limits placed on dark-matter pair production in association with bottom or top quarks
- results interpreted in framework of simplified models of spin-0 mediators to the dark sector decaying into pairs of DM particles
- no significant excesses observed
- mediator masses between 10 and 50 GeV excluded at 95% CL
- 300 times the nominal x-sec limit placed for scalar and pseudoscalar mediator masses between 10 and 50 GeV in bottom-quark final states
- *b*-FDM constraints exclude $m_{\phi} < 1.1$ TeV for $m_{\chi} = 35$ GeV

Backup

- $\Delta \phi(j, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) = \Delta \phi$ between missing energy and any jet
- H_{T3} = scalar sum of jet momenta excluding leading and subleading jets

•
$$\delta^+ = |\Delta \phi(j, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) + \Delta \phi_{bb} - \pi$$

- $\delta^- = \Delta \phi(j, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) \Delta \phi_{bb}$
- $m_{R=0.8}^{jet \ 1,2}$ = mass of leading and subleading jet with R=0.8
- $m_{R=1.2}^{jet \ 1,2}$ = mass of leading and subleading jet with R=1.2
- $m_{T}^{b,mathrmmin}$ = transverse mass of \vec{p}_{T}^{miss} and b jet with smallest ΔR to it • $m_{T}^{b,mathrmmax}$ = transverse mass of \vec{p}_{T}^{miss} and b jet with largest ΔR to it
- ΔR_{bb} = angular distance between the 2 b jets
- m_{T2}^{ll} = "stransverse mass". kinematic variable with an endpoint at the *W*-boson mass. Link

•
$$cos^*(bb) = |tanh(\frac{\Delta\eta_{bb}}{2})|$$

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Control Region Definitions

CRTb2, CRTt1 and CRTt2:

- to estimate tt
- tight 1 lepton regions in SRb2, SRt1 and SRt2
- CRZt1, CRZt2, CRZb1 and CRZb2:
 - to estimate $Z \rightarrow \nu \nu$ in all SRs
 - 2 same flavour opposite sign leptons with invariant mass ~Z mass
- CRγ and CR3I (SRT3)
 - to estimate $t\bar{t}Z(\rightarrow \nu\nu)$ in SRt1, SRT2 and SRT3
 - CR γ requires $p_{T\gamma} > m_Z$ to imitate $t\bar{t}Z(\rightarrow \nu\nu)$
 - CR3Ì maker use of Z → l⁺l[−] and semi-leptonic tt

Observable	CRZb1	CRZb2	CRZt1 CRZt2	CRTb2	CRTt1 CRTt2	CRTt3	$CR\gamma$	$CR3\ell$
Trigger	1ℓ	1ℓ	1ℓ	1ℓ	E_{T}^{miss}	2ℓ	1γ	2ℓ
\mathcal{N}_{i}	≥ 2	2-3	≥ 4	2-3	≥ 3	≥ 1	≥ 4	$\ge 3 \ge 4$
N_b	≥ 1	≥ 2	≥ 2	≥ 2	≥ 2	≥ 1	≥ 2	≥ 2 or $= 1$
N_{ℓ}^{T}	= 2 (§	SFOS)	= 2 (SFOS)	= 1	= 1	-	= 1	
N_{ℓ}^{M}	-	-	-	-	-	= 2 (OS)	-	3 (1 SFOS)
N _τ	-	-	0	-	0	-	-	
N_{γ}		-				= 1		
E_T^{miss} [GeV]	< 120	< 60	< 50	> 180	> 250	-	-	-
$E_{T,\ell\ell}^{miss}$ [GeV]	> 300	> 120	> 160	-	-	-	-	> 80
$p_T(\gamma)$ [GeV]	-	-	-	-	0	-	> 150	-
$p_T(\ell_1), p_T(\ell_2)$ [GeV]	> 30, > 25	> 30, > 25	> 28, > 28	> 30, -	> 28, -	> 25, 20	> 28	> 25, > 20
Multi-jet rejection specific	as	SR	no		as SR		no	as SR
m_T [GeV]	-	-	-	> 30	[30-100]	-	-	> 30
$\Delta R_{b\ell}^{\min}$ [rad]	-	-	-	-	< 1.0 < 1.5	-	-	-
$ m_{\ell\ell} - m_Z $ [GeV]	< 20	< 30	< 5	-	-	as SR	-	< 10
$\Delta \phi(j, \vec{p}_{T,H}^{miss})$ [rad]	> 0.6	-			-		-	-
Hratio	-	> 0	-	as SR	-	-		-
$\delta_{\ell\ell}^{-}, \delta_{\ell\ell}^{+}$ [rad]	-	< 1, < 0.5	-	as SR	-	-	-	-
$m_{R=SR}^{\text{jet 0}}$ [GeV]	-	-	> 60 > 60	-	> 60 > 140	-		-
$m_{B=SB}^{\text{jet 1}}$ [GeV]	-	-	-	-	> 60 > 80	-	-	-
$m_T^{b,\min}$ [GeV]	-	-	-	-	> 100	-		
$m_T^{b,max}$ [GeV]	-	-	-	-	-	-	-	-
$m_{T,\ell\ell}^{b,\min}$ [GeV]	-	-	- > 100	-	-	-	-	-
$m_{T,\ell\ell}^{b,max}$ [GeV]	-	-	> 100 -	-	-	-		
ΔR_{bb}	-	-	0	-	1.5	-		-
$E_{Tr ss}^{miss, sig} \left[\sqrt{GeV} \right]$	-	-	- > 6	-	-	-		-
ξ^+ [GeV]	-	-	-	-	-	< 150	-	
min [GeV]	-	-				< 170		
\mathcal{E}_{ts}^+ [GeV]	-	-	-	-	-	-		> 120
m ^{min} _{2bf} [GeV]	-	-	-	-	-	-		< 170

Eur. Phys. J. C 78 (2018) 18

・ロト ・回ト ・ヨト ・ヨト

DM+HF @ ATLAS

April 9, 2019 19 / 22

Validation Region Definitions

- SRb2 backgrounds validated in VRb2
- SRt1 and SRt2:
 - top background estimated in VRTt1 and VRTt2
 - Z background estimated in VRZt1 and VRZt2
- SRt3 top background validated in SRT3

Observable	VRb2	VRZt1 VRZt2	VRTt1 VRTt2	VRTt3
Trigger	E_{T}^{miss}	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$2\mu 2e 1e1\mu$
\mathcal{N}_{j}	2-3	≥ 4	≥ 4	≥ 1
\mathcal{N}_{b}	≥ 2	≥ 2	≥ 2	≥ 1
N_{ℓ}		a	s SR	
τ multiplicity	-	-	0	-
$E_{\rm T}^{\rm miss}$ [GeV]	> 180	> 250	> 300	-
$p_{\rm T}(j_1, j_2)$ [GeV]	> 150, > 20	> 80, > 80	> 80, > 80	> 30,-
$p_T(j_3, j_4)$ [GeV]	< 60,-	> 40, > 40	> 40, > 40	-
$p_T(bj_1)$ [GeV]	> 150	> 20	> 20	> 30
$p_{\rm T}(\ell_1, \ell_2) [{\rm GeV}]$	-	-	-	> 25, 20
Multi-jet rejection		a	s SR	
$ m_{\ell\ell}^{SF} - m_Z $ [GeV]	-	-	-	> 20
δ^{-}, δ^{+} [rad]	< 0, > 0.5	-	-	-
$m_{R=SR}^{\text{jet 0}}$ [GeV]	-	< 80 < 140	> 80 > 140	-
$m_{\rm R=SR}^{\rm jet \ 1} \ [{ m GeV}]$	-	-	> 40 > 50	-
$m_{\rm T}^{b,{ m min}}$ [GeV]	-	> 150	(80, 150) $(100, 200)$	-
$m_{\rm T}^{b,{ m max}}$ [GeV]	-	> 250 -	> 200 -	-
ΔR_{bb}	-	< 1.5	> 0.8 > 1.0	-
$E_{\rm T}^{\rm miss, \ sig} \left[\sqrt{GeV}\right]$	-	> 12 -	- > 10	-
$\xi^+, m_{b2\ell}^{\min}, m_{T2}^{\ell \ell} [\text{GeV}]$	-	-	-	as SR
$\Delta \phi_{\text{boost}}$ [rad]	-	-	-	> 1.5

Eur. Phys. J. C 78 (2018) 18

April 9, 2019 20 / 22

DMbb & b-FDM Definitions

- some common requirements:
 - passes E_{T}^{miss} trigger
 - minimum requirement on $\Delta \phi(j, \vec{p}_{T}^{miss})$ to reduce multi-jet contamination
 - at least 1 b-tagged jet
- SRb1 signal region optimised for b-FDM models require:
 - very high $E_{\rm T}^{\rm miss}$ requirement
 - upper limit on scalar sum of jet momenta excluding leading and subleading jets (H_{T3}) required to reduce $t\bar{t}$ background.
- SRb2 signal region optimised for DMbb models require:
 - at least 2 b-tagged jets
 - 2 or 3 jets only and $rac{p_{\mathrm{T}}(j_{1})}{H_{\mathrm{T}}} = H_{\mathrm{T}}^{\mathrm{ratio}} < 100$ to reduce $t\bar{t}$ background
 - δ^+ & δ^- take advantage of azimuthal separations between $\Delta \phi(bb)$ and $\Delta \phi(j, \vec{p}_{T}^{miss})$ to discriminate signal from irreducible $Z(\nu\bar{\nu}) + b\bar{b}$ background

Observable	SRb1	SRb2			
Trigger	$E_{\rm T}^{\rm miss}$				
\mathcal{N}_{j}	≥ 2	2 or 3			
$\mathcal{N}_{b_{a}}^{\mathrm{T}}$	≥ 1	≥ 2			
$\mathcal{N}_{\ell}^{\mathrm{B}}$		0			
$E_{\rm T}^{\rm miss}$ [GeV]	> 650	> 180			
$p_{\rm T}(bj_1)$ [GeV]	> 160	> 150			
$p_{\rm T}(j_1) \; [{\rm GeV}]$	> 160	> 150			
$p_{\rm T}(j_2) \; [{\rm GeV}]$	> 160	> 20			
$p_{\rm T}(j_3) \; [{\rm GeV}]$	-	< 60			
$H_{\rm T3} \ [{\rm GeV}]$	< 100	-			
$H_{\mathrm{T}}^{\mathrm{ratio}}$	-	> 0.75			
δ^{-} [rad]	-	< 0			
δ^+ [rad]	-	< 0.5			
Multi-jet rejection specific					
$\Delta \phi(\mathbf{j}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$ [rad]	> 0.6	> 0.4			
Eur. Phys. J. C 78 (2018) 18					
◆□▶▲@▶▲≣▶▲≣▶ ≣ めへの					
	April 9 201	9 21/22			

$DMt\bar{t}0l$ & $DMt\bar{t}2l$ Definitions

- SRt1 & SRt2 signal regions optimised for low mediator mass ($m_{\phi/a} < 100 \text{ GeV}$) and high mediator mass ($100 \text{ GeV} < m_{\phi/a} < 250 \text{ GeV}$) DM $t\bar{t}0l$ models respectively and require:
 - passes $E_{\mathrm{T}}^{\mathrm{miss}}$ trigger
 - at least 4 jets, 2 of which of b-jets
 - $E_{\rm T}^{\rm miss} > 300 \, {\rm GeV}$
 - several requirements on composite jet/E^{miss} variables to reduce multi-jet contamination
 - cuts on $m_{R=0.8}^{jet 1,2}$, $m_{R=1.2}^{jet 1,2}$, $m_{T}^{b,min}$, $m_{T}^{b,max}$ and ΔR_{bb} discriminate DM signal from background (variables defined in backup)
- SRt3 signal region optimised for DMtt
 2l models require:
 - 2 opposite sign leptons
 - at least 1 b-tagged jet
 - 'stransverse mass' (m^{ll}_{T2}) used as main background discriminant. This is a kinematic variable with an endpoint at the W-boson mass and so can be used to classify events with 2 Ws (Link)

Observable	SRt1	SRt2	SRt3
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$		2ℓ
\mathcal{N}_i	2	4	≥ 1
\mathcal{N}_{b}^{M}	2	2	≥ 1
\mathcal{N}_{ℓ}^{B}		0	-
\mathcal{N}_{ℓ}^{M}		-	2 OS
N_{τ}		0	-
E_{T}^{miss} [GeV]	>	300	
$p_{T}(bj_{1})$ [GeV]	>	20	> 30
$p_{\rm T}(j_1, j_2)$ [GeV]	> 8	0,80	> 30
$p_{\rm T}(j_3, j_4)$ [GeV]	> 4	0, 40	-
$p_T(\ell_1, \ell_2)$ [GeV]	-		> 25, 20
$m_{\ell\ell}$ [GeV]	-		> 20
$ m_{\ell\ell}^{SF}-m_Z $ [GeV]	-		> 20
$m_{\rm R=0.8}^{\rm jet\ 1,2}$ [GeV]	> 80, 80	-	-
$m_{R=1.2}^{\text{jet } 1,2}$ [GeV]	-	> 140,80	-
$m_T^{b,min}$ [GeV]	> 150	> 200	-
$m_T^{b,max}$ [GeV]	> 250		-
ΔR_{bb}	> 1.5	> 1.5	-
$E_{\rm T}^{\rm miss, \ sig} \ [\sqrt{GeV}]$	-	> 12	-
$\Delta \phi_{\text{boost}}$ [rad]		-	< 0.8
$m_{h2\ell}^{\min}$ [GeV]		-	< 170
ξ^+ [GeV]		-	> 170
$m_{T2}^{\ell\ell}$ [GeV]	-		> 100
Multi-jet rejection specific			
$\Delta \phi(j, \vec{p}_T^{\text{miss}})$ [rad]	> 0.4		-
$E_{\rm T}^{\rm miss, track}$ [GeV]	> 30		-
$\Delta \phi(\vec{p}_{T}^{\text{miss}}, \vec{p}_{T}^{\text{miss,track}})$ [rad]	$< \pi/3$		-

Eur. Phys. J. C 78 (2018) 18

・ロト ・回ト ・ヨト ・ヨト

April 9, 2019 22 / 22