

The Water Cherenkov Monitor for Anti-Neutrinos (WATCHMAN) at the **Advanced Instrumentation Testbed**

Matthew Malek (on behalf of the WATCHMAN Collaboration) IOP HEPP + APP Annual Meeting 09 Apr 2019

The WATCHMAN Charge

We have been charged by the primary sponsor (US NNSA) with the goal:

Verify, to 3σ confidence, the presence of a nuclear reactor (if one exists) within 30 days.

Assuming a reactor signal of ~10 events per day, this requires reducing backgrounds to ~330 events per day.

→ Applied anti-neutrino physics <u>not</u> pure science!

What is WATCHMAN?

Objectives:

Remote monitoring of small fission reactors (~40 MWth) via detection of antineutrino emissions.

Initial project goal is to observe reactor on/off states at approximately 10 - 30 km distance from reactor.

Prototype Design Features:

- Medium scale (~1 ktonne fiducial mass) water-based gadolinium-loaded anti-neutrino detector
- Initial prototype to demonstrate monitoring of a single known reactor site
- Rationale is to develop a detector design that can be scaled to larger masses for smaller reactors and larger standoff distances

What is WATCHMAN?

Anti-Neutrino Detection via Gd

Basic idea:

Tag antineutrinos via <u>coincidence</u> between positron and neutron from inverse beta decay:

In ordinary water:

Neutron thermalizes, then is captured on a free proton

- Capture time is ~200 μsec
- 2.2 MeV gamma emitted
- Detection efficiency @ SK
 (40% coverage) is ~20%
- When n captured on Gd:
 - Capture time ~30 μsec
 - ~8 MeV gamma cascade
 - 4 5 MeV visible energy
 - > 70% detection efficiency

Gd Capture X-Sections

0.167

48800

Thermal Capture Cross Sections: A Comparison of ENDF/B-VI to RPI Results*

Thermal Capture Cross Sections							
		ENDF			RPI		
Isotope	Abundance	Thermal Capture	Contribution to Elemental	Percent	Thermal Capture	Contribution to Elemental	Percent
¹⁵² Gd ¹⁵⁴ Gd	0.200 2.18	1 050 85.0	2.10 1.85	0.00430 0.00379	1 050 85.8	2.10 1.87	0.00430 0.00422
155 Gd 156 Gd 157 Gd	14.80 20.47 15.65	60 700 1.71 254 000	8 980 0.350 3 9 8 0 0	18.4 0.000717 81.6	60 200 1.74 226 000		2% Gd ₂ (SO ₄)
158 Gd	24.84	2.01	0.490	0.00102	2 10	(1	~100t for SK)

0.000342

100.0

G. Leinweber et al., Nucl.Sci.Eng. **154:261** (2006)

0.765

Cross-section for neutron capture is:

- ~49,000 barns for natural Gd
- 0.3 barns for H

0.1% Gd concentration results in ~90% of neutrons capturing on Gd

¹⁶⁰Gd

Gd

21.86

^{*}The units of all cross sections are barns. The units of abundance are percent.

Advanced Instrumentation Testbed

The WATCHMAN prototype site requires:

- (a) an underground laboratory (or potential to build one) that is within ~30 km of
- (b) a nuclear reactor

The World In Anti-Neutrinos

(see geoneutrinos.org for more)

Advanced Instrumentation Testbed

The WATCHMAN prototype site requires:

- (a) an underground laboratory (or potential to build one) that is within ~30 km of
- (b) a nuclear reactor

2017: STFC Boulby Underground Laboratory chosen as site!

Boulby Underground Laboratory

Depth:

1100 metres underground 2800 metres water equivalent 10⁻⁶ cosmic ray muon attenuation

Operating lab for > 20 years Current lab from 2017

New cavern needed to accommodate AIT-WATCHMAN (\sim 25m ϕ x \sim 25m h)

Hartlepool Nuclear Reactors

Dual-core reactor complex Advanced gas-cooled reactors (AGR) 1550 MW_{th} per reactor core

~25 km standoff from Boulby Lab

Can look for flux difference between 1-core & 2-core operation Potential for future complementary work with near-field detection

WATCHMAN fluxes

Thanks to Antineutrino Global Map project, there is now an online tool to get such reactor fluxes (and natural backgrounds)! (For more detail, see S.Dye's preprint at nucl-ex:1611.01575)

Stretch Goals: Directionality

Other possibilities exist for expanding on the WATCHMAN concept, like using the elastic scattering events for directionality.

Benefits:

- Ability to distinguish sources when multiple reactors are present
- Ability to locate a clandestine reactor that has been found

Directionality enhances the potential of WATCHMAN, but is not necessary for the original charge.

Future Technologies

WATCHMAN is the 1st phase of the Advanced Instrumentation Testbed. AIT is also engaged with R&D for enhanced detection technologies:

<u>Large Area Picosecond</u> <u>Photo-Detectors (LAPPDs):</u>

Future goals include enhancing capacity for non-proliferation as well as science goals like: geoneutrinos, CNO solar ν , neutrinoless double-beta decay (0 $\nu\beta\beta$)

<u>Water-based</u> <u>Liquid Scintillator (WbLS):</u>

AIT-WATCHMAN Plan

The WATCHMAN Collaboration

By the numbers:

- 2 countries (US & UK)
- 21 universities
- 3 US laboratories
- 2 UK laboratories
- ~90 total collaborators

UK participation:

- 3 universities (so far): Sheffield, Edinburgh, Liverpool
- STFC-Boulby Underground Lab
- Atomic Weapons Establishment
- ~30 total collaborators
- £9.7M funding from STFC (via UKRI Fund for International Collab.)
- £1M funding from Ministry of Defence

Thank you for listening!