Searching for new physics with emu asymmetry at ATLAS

HOLLY PACEY

IOP HEPP/APP 2019

09/04/2019

UNIVERSITY OF CAMBRIDGE

Topics

- 1. The Idea
- 2. Signal Models
- 3. Backgrounds and Biases
- 4. Expected Results

Fig. Emus patrolling for signs of suspicious event yields in Adelaide

Idea: The measurement

in very general, broad regions of data

 Produce Model Independent upper limits on R, possible e⁺μ⁻ excess.
 Produce Model Dependent limits on some example BSM model in optimised regions of data.

Idea: Why...

- any simple SM tests not done?
- $^\circ\,$ Uncharged final state less affected by proton charge asymmetry $\textcircled{\odot}$
- $\,\circ\,$ Generally ATLAS detection is independent of the lepton charge... $\textcircled{\odot}$
- $^{\circ}$ Expect ratio in SM(+ATLAS) to be ~≤1
- o No reason to assume ratio is ~1 in BSM!
- After run-2 ended we have:
 - $^{\circ}$ Loads of data
 - Relatively less MC
- Focus on comparing data-data?
 - Ratios allow cancelation of some uncertainties (luminosity etc.)
 - Compared to direct measurement probe rarer signals because the overall BG yield is less important.

Signals: RPV-SUSY

- Look for any BSM models which might give a $\frac{e^+\mu^-}{e^-\mu^+} > 1$?
- MSSM+ an RPV, lepton-flavour violating coupling set non-zero: λ'_{231}
- Proton = $uud \dots$
 - \circ more d than \overline{d} ...
 - \circ more μ^- than μ^+ ...
 - expect Ratio>1
- t can decay to an oppositely charged electron.
- Sensitivity in region with high p_T^{miss}

Signals: Scalar Leptoquarks

- Scalar leptoquark model (LO_LQ_S1)
- 1 Scalar LQ: "S1"
- Switch on coupling(S1 e u), coupling(S1 μ c) others 0.
- Diagram: $e^+\mu^- > e^-\mu^+$ from proton PDF asymmetry (more u than \bar{u})
- Constraints from HERA, etc., still leave some phase space uncovered
- Sensitivity in region with low p_T^{miss} and 1 jet

Can avoid region of phase space where symmetric pair production could wash out signal.

UNIVERSITY OF CAMBRIDGE

Backgrounds and Biases

$$\frac{N_{obs}(e^+\mu^-)}{N_{obs}(e^-\mu^+)} = \frac{\sigma(e^+\mu^-)}{\sigma(e^-\mu^+)} \times \frac{biases}{biases} \times \frac{poisson(exp \to obs)}{poisson(exp \to obs)}$$

- σ refers to the 'true' cross section ignoring detector biases and non-prompt processes
- Biasing backgrounds:
 - W+jet faking lepton
 - $^\circ\,$ Charge asymmetry: more W^+ than W^-
 - $^{\circ}$ Flavour asymmetry: more fake e than fake μ
 - Estimate using Matrix Method [arXiv:1012.1792]
 - Everything else: symmetric to leading order.

Backgrounds and **Biases**

Results: Variables for R

- Calculate R in bins of some variable which would give R>>1 for our example models.
- Current idea: use Transverse mass m_T
- In high p_T^{miss} topology $m_T(l, p_T^{miss})$ approximates bound on mass of heavy decaying particle e.g. $\tilde{\mu}$
- \circ In jet topology $m_T(l, jet)$ approximates bound on mass of heavy decaying particle e.g. S1.

$$m_T \approx \sqrt{2|p_1||p_2| - 2\vec{p}_1 \cdot \vec{p}_2} = \sqrt{2p_T^{\ell} p_T^{miss} (1 - \cos \Delta \phi)}$$

• Sum over 2 leptons to avoid introducing any charge/flavour bias to the variable.

- 1. ptmiss Region (for RPV-like models): 2 'good' leptons $e^+\mu^-$ or $e^-\mu^+$, no cuts on jets etc. Calculate R in bins of $\sum m_T(l, p_T^{miss})$
- 2. JET Region (for LQ-like models): 2 'good' leptons $e^+\mu^-$ or $e^-\mu^+$, ≥ 1 jet with $p_T > 20$ GeV, $|\eta| < 2.4$. Calculate R in $\sum m_T(l, jet1)$, where jet1=highest p_T Jet.

Results: Distributions for \boldsymbol{R}

- $\sum m_T(l, p_T^{miss})$
- Benchmark RPV-SUSY signals overlaid

- SM: Yields about the same for both cases \odot
- Signals: More events for $e^+\mu^ \odot$

Results: Distributions for \boldsymbol{R}

• $\sum m_T(l, jet1)$

4

• Benchmark Leptoquark signals overlaid

- SM: Yields about the same for both cases \odot
- Signals: More events for $e^+\mu^ \odot$

Results: The plan

- 1. Use a likelihood model for the ratio measurement in data: Maximise $log(\mathcal{L})$ for an estimate of:
 - r (charge ratio in each bin)
 - μ (yield in non-signal-like $e^{-\mu^{+}}$ channel)
- Set upper limit on a signal-like excess:

$$\mathcal{L} = \prod_{i \in \text{bins}} \left(\text{Pois}(N_i^{-+} | \mu_i + (1 - R_s)s_i) \times \text{Pois}(N_i^{+-} | \mu_i + R_s s_i) \right) \times \prod_{j \in \text{systs}} \text{Gaus}(\tilde{\theta}_j, \theta_j)$$

- $\circ \mu$ (yield in non-signal-like channel)
- s (excess in signal-like $e^+\mu^-$ channel)
- R_s = Fraction of signal entering $e^+\mu^-$

Uncertainties as nuisance parameters $\mathcal{L} = \left(\operatorname{Pois}(N_i^{-+}|\mu_i) \times \operatorname{Pois}(N_i^{+-}|r_i\mu_i) \right) \times$ $\operatorname{Gaus}(\tilde{\theta}_i, \theta_i)$ j∈systs 0.Emeu d'Australi

Fig. Unusual results hiding amongst the emu.

Set model-dependent limits on RPV-susy and leptoquark models 3.

i ∈ bins

Results: Expected R

- Left: MC including RPV-SUSY $\sum m_T(l, met)$
- Right: MC including leptoquarks $\sum m_T(l, jet1)$

- SM: Ratio consistent with 1 for both cases I signals: Ratio>>1 for high bins as expected I
- Statistical errors only..

Conclusion

- We are working on a **brand new, unique** analysis to produce:
 - Measurement of potential charge-flavour asymmetry never looked at before
 - Model independent approach to place limits on possible BSM physics
 - Place first ATLAS limits on these specific RPV-SUSY and leptoquark processes.
- Aiming for publication using full 140 fb⁻¹ of run-2 ATLAS data

Thanks for listening!

Any questions....

UNIVERSITY OF CAMBRIDGE

Emu Image credits

- <u>https://depositphotos.com/10866591/stock-photo-emu-in-front-of-a.html</u>
- https://www.123rf.com/photo_13706676_emu-isolated-on-white-background.html
- <u>https://www.kisspng.com/png-common-ostrich-bird-emu-lotion-cassowary-birds-ani-171779/preview.html</u>
- <u>https://www.adelaidenow.com.au/news/south-australia/emu-mobs-are-causing-chaos-for-farmers-and-residents-in-the-midnorth-sa-town-of-peterborough/news-story/c467c0320b57f54791e0dd84128f5f0a</u>
- https://www.123rf.com/photo_87247746_emu-isolated-over-a-white-background.html
- https://thebark.com/content/emu-who-acts-dog
- https://countrysidenetwork.com/daily/poultry/poultry-poultry/raising-emu-good-pets/
- <u>https://www.shutterstock.com/image-photo/emu-isolated-over-white-background-724487422?src=xiNbEnRq3tq0KogM4EbErw-1-</u>
 <u>2</u>
- https://www.homedepot.com/p/Taylor-Analog-Kitchen-Scale-in-Stainless-Steel-371021/205826087
- https://www.costumesonthecoast.com.au/gallery/2295/Animals.html
- https://www.thecostumepartyshop.com.au/store/p876/Emu_Mascot_Costume.html
- <u>https://imagenesmi.com/im%C3%A1genes/small-flightless-birds-a0.html</u>
- <u>https://perryponders.com/2015/03/10/in-1932-australia-waged-a-war-against-emus/</u> (FYI, the Emus won)