Latest $B \rightarrow \mu^+ \mu^-$ results with the ATLAS detector

F. Tresoldi

9 April 2019

Outline

- Introduction: BSM searches in B-physics
- 2015/16 B —> µ+µ- analysis
- B —> $\mu^+\mu^-$ Run 2 and HL-LHC projections

FNCN BSM searches in B-physics

- Some B-physics rare and semi-rare processes are mediated by flavour changing neutral current (FCNC)
 - No tree-level SM Feynman diagrams

- Suppressed SM amplitudes
 - Sensitive to small effects from NP loop contributions
 - We can indirectly search for new physics at scales beyond the reach of the LHC
 - Sensitive probe for beyond standard model physics

BSM searches in B-physics

• green and blue points show the possible effects of new physics on BR(B_d $\rightarrow \mu^+\mu^-$) - BR(B_s $\rightarrow \mu^+\mu^-$)

 $B \rightarrow \mu^+\mu^-$ state of the art

(as in August 2018)

$B \rightarrow \mu^+\mu^-$ analysis strategy

- New ATLAS analysis on 2015 / 16 data
- Measurement relative to $B^+ \longrightarrow J/\Psi K^+$ (normalisation channel)

- Blind analysis, mass region around signal peaks blinded
- Overwhelming non-resonant dimuon background
 - BDT trained for bb background reduction

CERN-EP-2018-291

$B \rightarrow \mu^+\mu^-$ backgrounds

7

- Three main background sources
 - Continuum:
 - Main background
 - Highly reduced with BDT
 - Partially reconstructed:
 - include several sources
 - Accumulate at low mass

using tight muons

CERN-EP-2018-291

Normalisation channel

- Extended unbinned maximum likelihood fit on B+ mass distribution from data
- N(B⁺) = 334351 ± 0.3% stat ± 4.8% syst

- based on B+ —> J/ Ψ K+ and B_s —> J/ Ψ Φ data
- Residual data-MC discrepancies fed into systematics **11**\$

Signal yield extraction

- Simultaneous extended ML fit on 4 BDT bins
- Models:
 - Signal, B->hh: double gaussian

 fixed shape, datadriven normalisation

- partially reconstructed: exponential
- Continuum bkg: pol1

Adata-driven shape and normalisation

- Signal yield:
 - Expected: $N(B_s) = 91$, $N(B_d) = 10$
 - Found: $N(B_s) = 80\pm22$, $N(B_d) = -11\pm19$

Signal yield extraction

sex sex

BR extraction

• Using the Neyman frequentist approach, including systematics:

$$\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \left(3.21^{+0.96+0.49}_{-0.91-0.30}\right) \times 10^{-9} = \left(3.2^{+1.1}_{-1.0}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 4.3 \times 10^{-10} \text{ at } 95\% \text{ CL} \end{aligned}$$

Combination with Run 1

- Combine Run 1 and 2015/16 likelihoods
 - Common parameters:
 - Reference channel BR
 - Hadronisation probability

• Exploiting Neyman construction: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.8}_{-0.7}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$ <u>Most stringent upper limit on</u> <u>the market!!!!</u>

 B⁰_s—>µµ combined significance: 4.6 sigma

B —> $\mu^+\mu^-$: **Run 2 and HL-LHC**

Run 2 projection

• Based on Run 1 analysis (projection precedes 2015-2016 result)

- Increased b production X-sec w.r.t Run 1
- Integrated luminosity: 130 fb⁻¹
- Consider a mixture of different triggers, in order to maximise the statistics

L-PHYS-PUB-2018-005

ATL-PHYS-PUB-2018-005

HL-LHC projections

- Integrated luminosity: 3 ab-1
- Increased b production X-sec w.r.t Run 1
- Trigger scenarios considered:
 - Conservative: mu10_mu10
 - Intermediate: mu10_mu6
 - High-yield: mu6_mu6
- Systematic uncertainties assumed to behave as in Run 1 analysis
- same pile-up robustness as Run 1 analysis
 - backgrounds due to bb events

15

conclusions

- B-physics searches can provide important hints on new physics beyond the reach of the LHC, overcoming the limits of direct production
- 2015/16 B —> $\mu^+\mu^-$ analysis:
 - Combined with Run 1 result
 - Most stringent BR(B —> $\mu^+\mu^-$) upper limit on the market
 - Compatible with SM expectation
- Future B —> $\mu^+\mu^-$:
 - Projections available for Run 2 and HL-LHC
 - Several scenarios explored

University of Sussex

BACKUP

$B_s \rightarrow \mu^+\mu^-$ at the LHC

no significant deviations from SM (so far)

keep searching

CERN-EP-2018-291

$B \rightarrow \mu^+\mu^-$ backgrounds

20

• Three main background sources

Continuum:

- Main background
- Highly reduced with BDT
- Partially reconstructed:
 - Include several sources
 - Accumulate at low mass
- fake mu background:
 - Semileptonics included in partially reconstructed
 - Peaking background
 - Next slide

$B \rightarrow \mu^+\mu^-$ backgrounds - peaking background

- B—>hh' with two fake μ
- Small but superimposed with signal
- Mis-identification reduced using tight muons
 - Improved of factor 0.39² with respect to loose muons

• Number of expected events = 2

$B_s \rightarrow \mu^+\mu^- BDT$

22

- MVA based discriminating variable, to enhance continuum background reduction
 - Boosted Decision Tree (BDT)

Variable	Description
p_{T}^{B}	Magnitude of the <i>B</i> candidate transverse momentum $\overrightarrow{p_T}^B$.
$\chi^2_{\rm PV,DV}$ xy	Compatibility of the separation $\overrightarrow{\Delta x}$ between production (<i>i.e.</i> associated PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_{T} \cdot \sum_{\overrightarrow{\Delta x}_{T}}^{-1} \cdot \overrightarrow{\Delta x}_{T}$, where $\sum_{\overrightarrow{\Delta x}_{T}}$ is the covariance matrix.
$\Delta R_{\rm flight}$	three-dimensional angular distance between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + \Delta \eta^2}$
$ \alpha_{2D} $	Absolute value of the angle in the transverse plane between $\overrightarrow{p_T}^B$ and $\overrightarrow{\Delta x_T}$.
L_{xy}	Projection of $\overrightarrow{\Delta x_T}$ along the direction of \overrightarrow{p}_T^B : $(\overrightarrow{\Delta x_T} \cdot \overrightarrow{p_T}^B) / \overrightarrow{p_T}^B $.
IP_B^{3D}	three-dimensional impact parameter of the B candidate to the associated PV.
DOCA _{µµ}	Distance of closest approach (DOCA) of the two tracks forming the B candidate (three-di- mensional).
$\Delta \phi_{\mu\mu}$	Difference in azimuthal angle between the momenta of the two tracks forming the B candidate.
$ d_0 ^{\max}$ -sig.	Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$ d_0 ^{\min}$ -sig.	Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$P_{\rm L}^{\rm min}$	The smaller of the projected values of the muon momenta along $\overrightarrow{p_T}^B$.
I _{0.7}	Isolation variable defined as ratio of $ \vec{p}_T^*B $ to the sum of $ \vec{p}_T^*B $ and of the transverse momenta of all additional tracks contained within a cone of size $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} < 0.7$ around the <i>B</i> direction. Only tracks matched to the same PV as the <i>B</i> candidate are included in the sum.
DOCA _{xtrk}	DOCA of the closest additional track to the decay vertex of the <i>B</i> candidate. Tracks matched to a PV different from the <i>B</i> candidate are excluded.
N _{xtrk} ^{close}	Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{strik},\text{DV}}) < 1$. The tracks matched to a PV different from the <i>B</i> candidate are excluded.
$\chi^2_{\mu,\mathrm{xPV}}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with any PV reconstructed in the event.

- same 15 input variables as Run 1
- trained and tested on data sidebands
 - randomly divide sample in three equal sub-samples
 - use sub-samples in turns to train, test and evaluate the BDT performance
- final selection: 54% signal efficiency (same as in Run 1)

acceptance X efficiency ratio

- takes into account relative differences in acceptance, efficiency, integrated luminosity and selection used for signal and normalisation channel
- calculation based on MC

$$\frac{\varepsilon_x}{\varepsilon_{J/\psi K^+}} = 0.1144 \pm 0.8\% \text{ (stat)} \pm 4.0\% \text{ (syst)}$$

• systematics:

Source	Contribution (%)	
Statistical	0.8	
BDT Input Variables	3.2	
Kaon Tracking Efficiency	1.5	
Muon trigger and reconstruction	1.0	
Kinematic Reweighting (DDW)	0.8	
Pile-up Reweighting	0.6	

$B^+ \rightarrow J/\Psi K^+$ yield extraction

- extended unbinned maximum likelihood fit on B+ mass distribution from data
 - complex MC driven models due to high statistics
- systematics:

Source of systematics	Value[%]
PRD1 parametrization	+1.7
PRD2 parametrization	-3
PRD3 parametrization	+1
Combinatorial parametrization	+1.7
Use B^+ signal sample	+2.2
Use B^- signal sample	+1.4
Weights	+0.7
Starting point	±1.4
PRD composition	+2.4
Combined	4.8

• fit result: N(B+) = 334351 ± 0.3% stat ± 4.8% syst

B —> mumu - combination with Run 1

$B \to \mu^{+}\mu^{-} \text{ projection}$

• uncertainty on BRs obtained from projections:

	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$		$\mathcal{B}(B^0 \to \mu^+ \mu^-)$	
	stat $[10^{-10}]$	$stat + syst [10^{-10}]$	stat $[10^{-10}]$	$stat + syst [10^{-10}]$
Run 2	7.0	8.3	1.42	1.43
HL-LHC: Conservative	3.2	5.5	0.53	0.54
HL-LHC: Intermediate	1.9	4.7	0.30	0.31
HL-LHC: High-yield	1.8	4.6	0.27	0.28

- systematic uncertainties become relevant in B_s measurement
 - expected improvement, but hard to estimate
- expected analysis reach:
 - comparable to CMS and LHCb's
 - complementary to B-factory experiments (Belle II)

 $B \rightarrow \mu^+ \mu^-$ projections

University of Sussex