Background model for the LUX experiment

Peter Rossiter On behalf of the LUX collaboration

IOP April 9, 2019

Contents

- Introduction to the LUX detector
 - Detection principle
 - Electron recoil event rejection
 - Multiple scatter event rejection

• Gamma-X events

- Sources
- Identification
- Cut development
- Cut validation
- Event simulation
- Simulation validation
- Concluding remarks
 - Status of a new & improved gamma-X cut
 - Future applications

LUX detector

- Located at SURF, South Dakota, USA
 - 1478 m underground 0
- Dual phase xenon Time Projection Chamber (TPC)
 - A liquid xenon (LXe) volume 0
 - Plus a gas phase above the grids
 - A vertical electric field over the LXe 0 volume
 - Average field strength of ~200 V/cm
 - 2 Photomultiplier tube (PMT) arrays Ο
 - 61 PMTs per array

Detection principle

- LUX is sensitive to interacting particles via two channels
 - Scintillation
 - Ionisation
 - An expected signal consists of two flashes of light (S1 & S2)
 - S1 Prompt scintillation photons which are immediately detected by PMTs
 - S2 Electrons which drift towards the gas phase are extracted. A high electric field accelerates them in the gas creating a delayed electroluminescence signal

Electron recoils vs. nuclear recoils

- LUX's standard WIMP search is tuned to look for a WIMP-nucleus scatter
 - 100% of detected electron recoils are considered background for WIMP search

Multiple scatters

- 100% of multiple scatters (MS) are background to WIMP search
- MS S1 signals are indistinguishable
 - A detector resolution limitation for all dual phase TPCs
- Multiple S2 pulses signify a multiple scatter event
- Separate S2 signals can be spatially distinguished
 - \circ $\,$ cm accuracy in XY $\,$
 - mm accuracy in Z

Incoming particle

Cathode

E-field

F-field

Gamma-X events (fake WIMPs)

- Gamma-X A multiple scatter, with an energy deposition above the cathode and one below the cathode
- An enhanced S1 signal relative to the S2 signal will be observed
 - Since only the S2 signal from the scatter above the cathode is seen
- The reduced S2/S1 ratio can push events out of the ER band into the NR band

Where are these high energy γ 's coming from?

- Ast Phys, 62, 101016, 2015 10^{0} ¹²⁷Xe ²¹⁴Pb (²³⁸U) ²²⁸Ac (²³²Th) cts / keV_{ee} / kg / day 10 ²¹⁴Bi (²³⁸U) 10^{-2} Examples of dominant gamma-X producers 10^{-3} 500 1000 1500 2000 2500 3000 Energy deposited [keV_e] Run 3 gamma spectrum Black - Measured LUX run 3 data (85.3 days) Red - Fitted simulation spectrum Gray - Simulation spectrum (pre-fit)
 - Dominant contribution to gamma-X events:
 - o ⁶⁰Co, ²³²Th, ⁴⁰K, ²³⁸U
 - These are present in the bottom PMT array
 - Other sources are capable of producing gamma-X events under the right circumstances
 - Expected to produce a subdominant contribution

Gamma-X identification

9

- Gamma-X events tend to appear deep in the LXe (near the cathode typically)
- Gamma-X events tend have a particular S1 topology in the bottom PMT array
 - Tightly clustered photon pattern in bottom PMT array
- These features can be used to define a cut parameter

Example of a suspected gamma-X event

Gamma-X cut development

- Cut parameter: S1 cluster size
 - Area weighted mean radius for the S1 light collected in the bottom PMTs
- Cut based on tritium calibration data
 - 80% event acceptance selected
 - Acceptance points fitted to an empirical curve
 - Events below this curve were removed
- Thus, events with the tightest clustering were removed
 - Theoretically removing more gamma-X events than single scatter

Run 4: 2014/09-2016/05, 332 live days

Gamma-X cut validation

- Single scatter events:
 - Run 4 data selection
 - Events with 1 S1 and 1 S2
 - All run 4 WIMP search cuts applied
 - Acceptance is better than 80% due to other data analysis cuts
- 'Near gamma-X' events:
 - Run 4 data selection
 - Events with 1 S1 and 2 S2s signals
 - One energy deposition within 2 cm of cathode
 - Fiducial cut extended to cathode
 - All other run 4 WIMP search cuts applied
- Simulated gamma-X events:
 - Selection placed on simulated background from bottom PMT array
 - Events required to deposit energy once above the cathode and below
- Cut removes more simulated gamma-X events and 'near gamma-X' events than single scatters

LUX Preliminary

Gamma-X simulation background

LUV

Disce Doce
GENERAL CANSE

- Backgrounds from bottom PMT array should dominate gamma-X production
- Decay rate based on post decommissioning radio-assay
- Gamma-X selection made at MC Truth level
- For 332 simulated live days:
 - 6637 gamma-X events identified (before cuts)

	Preliminary				
om	Source	Decay rate (Bq)	Simulated decays (332 days)	Single scatter production in fiducial region before cuts (Evt/kg/day/keV)	Gamma-X Production in fiducial region before cuts (Evt/kg/day/keV)
ost	²³² Th	0.17	4.88 x 10 ⁶	2.1 x 10 ⁻²	1.1 x 10 ⁻²
ade	²³⁸ U	0.64	1.92 x 10 ⁷	7.8 x 10 ⁻³	4.6 x 10 ⁻²
	⁶⁰ Co	0.16	4.59 x 10 ⁶	1.9 x 10 ⁻³	6.3 x 10 ⁻²
`	⁴⁰ K	4.1	1.18 x 10 ⁸	4.9 x 10 ⁻²	8.0 x 10 ⁻²

Simulation parameter validation

- Cut parameters can be validated by comparison of simulated ^{83m}Kr calibration source against run 4 data
- Simulations are close to matching data
 - Improvements to simulations are in progress

run 4 data, including Kr83m calibration source Red - Contour of simulated run 4 Kr83m

Alternative cut

- An alternative cut is being developed using a Boosted Decision Tree (BDT)
 - Trained on simulated gamma-X events
- BDT cut is early in development, and current does not use many parameters
- BDT cut already better with false negatives
 - Lower number of data events are removed, the vast majority of which are not gamma-X events
- Also removes a much higher proportion of simulated gamma-X events
- BDT cut will improve as more parameters are included

LUX Preliminary	Proportion of events removed			
Cut Type	Data: SS	Data: Near GX	Sim GX	
Proposed BDT cut	1.8%	19.1%	71.5%	
Existing GX cut	3.2%	26.0%	33.4%	

LUX Energy Range

- LUX's WIMP search is only one of several analysis taking place
- Gamma-X events were not a problem for LUX's run 4 WIMP search
- Understanding this background is still essential:
 - At higher energies, such as LUX's EFT search
 - G3 WIMP searches, such as LZ

- Gamma-X simulations, cut and validation are developing positively
 - Work on simulations continues but continue to show positive improvements
 - Cut currently removes ~30% of gamma-X events with little loss to single scatter data
 - \circ \quad Work is in progress on an improved cut using a BDT
- Gamma-X events could be a background for future studies
 - Or for searches at higher energy ranges
 - Cuts can be developed based on precise simulations and particular selections of multiple scatter events

Backup Slides

External background reduction

- Several precautions exists to ensure external backgrounds are subdominant
 - Depth at detectors location limits cosmogenic signals
 - Gammas produced in cavern rock further reduced by 300 tonne water shield (2.5 m.w.e)
 - Water tank outfitted with PMTs for muon tagging

- Thus the dominant background signal is from low-energy electron recoils (ER)
 - Originating from detector components, surfaces, and Xe contamination
 - Generated through electromagnetic
 interactions from photons or electrons 18

Fiducialization

 $\log_{10}(\text{DRU}_{ee})$ Astro Phys, Vol 62, P 33-46, 2015 -0.5 50 -1 40 -1.5 Height [cm] 05 -2 -2.5 -3 20 -3.5 -4 10 -4.5 100 200 300 400 500 0 Squared radius [cm²]

- Fiducialization The exclusion of signals in LXe near the walls, cathode, and gas phase
- Allows for background reduction from detector components and surfaces
- Density of LXe target

 (2.9 g cm⁻³) attenuates γ ray signals to the outer edge of the active region
 - mean free path on the order of several cm

Internal α , β , and γ sources

- 1. γ 's from radioactive contamination in the detector components
 - a. Intrinsic: ^{238}U , ^{232}Th , and ^{40}K
 - b. Activation of the Ti and Cu: ⁴⁶Sc and ⁶⁰Co
- 2. α , β , and γ 's from radioactive contamination in the Xe
 - a. Xe activation: ¹²⁷Xe, ¹²⁵I, ¹³³Xe, ^{131m}Xe, ^{129m}Xe, ¹²⁵Xe
 - b. ^{222,220}Rn progeny
 - c. Contamination: ⁸⁵Kr and ³⁹Ar
- 3. α , β , and γ 's radioactivity on the detector surfaces
 - a. Plate-out of ²²²Rn daughters: ²¹⁰Pb, ²¹⁰Bi, ²¹⁰Po

Background decay modes

21

Low energy background rates

Convertient Convertient

- Rates in 100 kg fiducial
- ER rates averaged over 0.9-5.3 keV_{ee} ROI
- NR rates averaged over 3.4-25 keV_{nr} ROI
- Rates taken from second half of run
 3
- ¹²⁷Xe given in brackets (not expected to contribute to run 4)

Ast Phys , 62, 101016, 2015

Source	Background Rate		
γ rays	$(1.0 \pm 0.1_{\text{stat}} \pm 0.1_{\text{sys}}) \text{ mDRU}_{ee}$		
214 Pb	0.2 mDRU_{ee}		
⁸⁵ Kr	$(0.17 \pm 0.10_{\rm sys}) {\rm mDRU}_{ee}$		
Int. neutrons	170 nDRU_{nr}		
Ext. neutrons	180 nDRU _{nr}		
Total predicted	$1.4\pm0.2~\mathrm{mDRU}_{ee}+350~\mathrm{nDRU}_{nr}$		
Total observed	$1.7 \pm 0.3 \text{ mDRU}_{ee} (0.14 \pm 0.03 ^{127}\text{Xe})$		

Preliminary LUX gamma spectrum (run 4)

- Fiducial cut
 - r < 230 mm
 - 70 mm < z < 500 mm
- Normalisation of simulations to be based on radio-assay measurements
 - No fit to measured spectrum yet

- Resolution model simulation spectrum still under development
 - Resolution model designed to fix peak widths
- Model fit will provide
 tighter constraint on
 background

Red - LUX run 4 data (332 days) Black - Combined simulation spectrum (pre-fit)

Gamma-X cut parameter

 Area weighted mean radius for the S1 light collected in the bottom PMTs

 x_i , $y_i = x$ and y location of each PMT in the bottom array a_i = uncorrected quantity of light (phd) seen in each PMT bottom PMTs A = a_i bottom PMTs $(a_i \cdot x_i)$ x bottom PMTs $(a_i \cdot y_i)$ bottom PMTs $a_i \sqrt{((x_i - \bar{x})^2 + (y_i - \bar{y})^2)}$ cluster_size_gx A

Simulated gamma-X events

UX Preliminary

- 3 data analysis cuts significantly affect gamma-X rate
 - Fiducial cut Ο
 - S1 cut \bigcirc
 - Isolated S1 cut 0
- Several data analysis cuts used in the WIMP search were highly effective at removing GX events
 - Even before applying a 0 specific GX cut

Phys Rev Lett, 118, 021303, 2017

Cut applied	No cut	Fiducial cut	Fid+S1 cut	Fid+S1+ other quality cuts		
Number of GX events	6637	1278	525	15		
Events in WIMP ROI	34	6	6	0		

Cluster separation validation status

- A further validation is to apply the 'near gamma-X' cut to the simulations and compare the distance between the two S2 clusters
- Analysis is statistically limited
 - n_Events from data = 96
 - n_Events from sims = 124
- Result may suggest further development to simulations

